OpenBase®
Users Guide

Version 6.0
March 15, 1999

Because of last-minute changes to OpenBase, some
of the information in this manual may be inaccurate.
Please read the Release Notes on the OpenBase CD
for the latest up-to-date information.

Copyright © 1998 by OpenBase International Ltd. All rights reserved.

Documentation stored on the compact disk(s) may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmitted
in any form by any means, electronic or mechanical, including photocopying, recording, or
any information storage and retrieval system, without permission in writing from Open-
Base International.

OpenBase, the OpenBase logo, OpenBase Manager are registered trademarks of OpenBase
International.

All other trademarks and registered trademarks are the property of their respective own-
ers.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUBJECT
TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact OpenBase:

U.S.A. and international OpenBase International, Ltd.
58 Greenfield Road
Francestown, NH 03043
U.S.A.

Ordering Voice: (603) 547-8404
Fax: (603) 547-2423

World Wide Web htt p://ww. openbase. com

Information i nf o@penbase. com

OpenBase License Agreement

OpenBase License Agreement

LICENSE

You may only use this software on a single network and in compliance with the
specified connection limitation. You may not use OpenBase with an internet or
web browser related application unless you have an OpenBase WebServer
license. Additional locations or networks must obtain another license to use this
software. You may transfer the program and license to another party to use, if the
other party agrees to accept the terms and conditions of this licensing agreement.
If you transfer the programs, you must destroy any remaining copies of the
software.

TERM

The license is effective until terminated. You may terminate it at any time by
destroying all the copies of the software and the manual. OpenBase International,
Ltd. maintains the right to terminate your license immediately if you fail to
comply with any term or condition of this agreement. You agree upon any such
termination that you will destroy all materials contained herein.

PROPIETARY RIGHTS

OpenBase is copyrighted by OpenBase International, Ltd. and is proprietary.
OpenBase International, Ltd. retains title and ownership of OpenBase and all
copies of OpenBase. You agree to hold OpenBase authorization codes in confi-
dence and to take all reasonable steps to prevent disclosure. You also agree to pay
any illegal use of your authorization code.

LIMITED WARRANTY

OpenBase International, Ltd. warrants to you that the disk, CD or internet
download package from which you obtained OpenBase, is free from defects in
materials and workmanship under normal use for a period of ninety (90) days
from the date of purchase.

Users Guide OB-3

OpenBase License Agreement

LIMITATION OF LIABILITY

Neither OpenBase International, Ltd. nor any one else involved in the creation,
production, delivery, or licensing of OpenBase makes any warranty or represen-
tation of any kind with respect to OpenBase, its quality, reliability, performance
or fitness for any purpose. OpenBase is licensed in its present form, and you
assume the risk as to the quality, reliability, and performance of the software and
documentation.

It is your responsibility to maintain frequent backups of database and other files.
In no event shall OpenBase International, Ltd. be liable to you for any conse-
guential, special, incidental, direct, or indirect damages of any kind arising out of
the use of OpenBase.

INTEGRATION

You acknowledge that you have read and understood this agreement, and by
opening the seal on this package or checking the button “To continue click on the
check button indicating you agree with the license” from the OpenBase Setup.app
program, you agree to be bound by its terms and conditions. In addition, you
agree that this agreement is the complete and exclusive statement of the
agreement between you and OpenBase International, Ltd.

OB—4 Users Guide

Table of Contents

1 OpenBase Overview
Introduction ..
Client-Server Archltecture .
License Scheme .

2 Getting Started
Installing OpenBase .
MacOS X Server .
Windows NT
OpenStep 4.2 . .
Nameserver and Localhost Setup
Localhost Setup .
NameserverHosts Setup .
OpenBase Manager .
Sample Databases .
Starting Databases .

3 OpenBase Manager
Managing Database Servers.
Database Window .
Starting Databases .
Stopping Databases .
Creating New Databases
Duplicating Databases

Changing Database Name and Host.

Administration and Schema Design .
Adding and Editing Database Users
Editing the Database Schema
Database Backup Manager
Replication Manager .

Viewing Database Information .
Data Viewer Window .

Preference Panel

Cleanup before eX|t
Log SQL to file.
Date, Time, and Money .

11
.12

. .13
.14

15
.15
. .15
.15
. .15
.16
. .16
.17
.17
.17
.18

19
. .20
.20
.21
. .22
.22
.22
.22
.23
.24
.27
. .29
.30
.31
.31
.33
.35
.35
.35

Users Guide OB-5

Localized Sorting
Change Password .
Interactive SQL .

Backup, Restore and Script Functlons.

4 OpenBase SQL Language

SQL Standards .

SQL Statements .
SELECT...FROM .

Joins . . .

Inner & Outer Joms .

Derived columns . .
The FROM clause explamed
The WHERE clause .
The ORDER BY clause

Value Conversion Functions.
TOCHAR(value) .
TODOUBLE(value) .

String Manipulation Functions .
LENGTH(string) . .
INDEXOF(string, substrlng)

REPLACE(string, startpos, Iength replacestrlng) .
SUBSTRING(string, startpos, length) .

UPPER(string), LOWER(string)
RIGHT(string, length) .
LEFT(string, length)
TRIM(string) .
PROPER(Strmg)

IF(condition, returnVaIueIfTrue retVaIueIfFaIse).
CHOOSE(number, valuel, value2,...). .

Aggregate Functions and GROUP BY

Subqueries . .

Inserting Database Informatlon .
INSERT... INTO .

Updating Database Records.
UPDATE...SET .

.35
. 36
. 36
.37

39
.41
.41
.41
.42
.43
.44
.46
.47
.48
. .49
.49
.49
. .50
.50
.50
. .51
.91
. .51
.52
. .52
.52
.52
. .52
.53
. .53
.54
.55
.55
. 56
. 56

OB-6 Users Guide

Deleting Database Records .
DELETE FROM
Expressing String Values .
Creating Tables .
CREATE TABLE .
NOT NULL . .
INDEX and UNIQUE INDEX

CLUSTERED INDEX and CLUSTERED UNIQUE INDEX.

REFERENCES table.column .
CREATE VIEW
Creating Indexes.
CREATE [UNIQUE] INDEX .
CREATE CLUSTERED [UNIQUE] INDEX
Dropping and Renaming Tables .
DROP TABLE .
DROP VIEW . -
Changing Database Schemas .
ALTER TABLE.
Changing User Access .
GRANT... ACCESS... TO

5 Transaction Management
Transaction Overview .
Starting a Transaction .
START TRANSACTION
Committing Changes to the Database
COMMIT .
Aborting a Transaction .
ROLLBACK .
Locking Options.
WRITE TABLE .
FOR UPDATE . . .
LOCK RECORD / UNLOCK RECORD .

6 Programming Interface
Connecting to a Database Server.

.58
.58
. .58
. .59
.59
. 60
. .60
.60
.60
.62
. .64
.64
. .64
.65
. .65
.65
. .65
. .65
. 68
. 68

73

. .73
.74
.74
.74
.74

. .75
.75
.75
.75
. 76
.76

79

.79

Users Guide OB-7

ConstructingSQL8
SQL Statement Execution8
UsingRow IDs. i
LmkmgBLOBsToYourRecords T < 4
RetrievingRecords.8
SimpleTool Example8
Discussion: SimpleTool_mainm85

7 Application Notification 89
Overview. T - 1]
ReglsterlngforNotlflcatlon e -1

8 OpenBase API 91
Overview. . . . X
OpenBaseSQLObJectlveCmethods...................91
beginTransaction:93
bindDouble:,
bindInt:9%
bindLong:
bindLongLong:o
bindString:98
bufferHasCommands100
clearCommands11
commandBuffer00 000102
commitTransaction103
connectErrorMessage: 10
connectToDatabase:onHost:login: password return T 105
databaseNameo o000 o107
executeCommand108
hostName1009
isColumnNULL:110
loginName111
makeCommand: . . . O
markRowofTabIeaIreadyMarkedByUser I <
nextRow 114
password11

OB-8 Users Guide

removeMarkOnRow:ofTable:.
removeNotificationFor: .
resultColumnCount
resultColumnName;
resultColumnType .
resultReturned .
resultTableName:
rollbackTransaction .
rowsAffected
serverMessage .
startNotificationFor:
uniqueRowIldForTable:
Blob/Object Handling Methods:.
retrieveBinary: .
insertBinary:size: .

9 Interactive SQL
Getting Started
Executing SQL Queries .
Clearing a Mistake.
Comments . Co
Importing SQL Data .
Bulk Loading Data.
Bulk Saving Data .
Backup & Restore .
History.
Exiting OpenlISQL .

10 Advanced Administration
Exporting Databases.
Improving Connect Time Using Ports

Fine Tuning Database Memory Usage .

Improving Select Performance.
Configuring the Network .
Loading data into OpenBase .

. 116
117
118
119
120
122

. 123

. 124

. 125

.. 126

. 127

. 128

. 129
130
131

133

. 133

. 134

. 135

. 135
.. 135
. 135
.. 136
. 137

. 139
139

141
141
14
.. 142
. 142
143

144

Users Guide OB-9

OB-10 Users Guide

OpenBase Overview

OpenBase is a client-server database providing fast data storage for
multi-user applications using SQL (Standard Query Language).

This manual is meant for software developers who have a working
knowledge of Objective-C or C programming. This manual is
organized as follows:

“OpenBase Overview” on page 11.

“Getting Started” on page 15.

“OpenBase Manager” on page 19.

“OpenBase SQL Language” on page 39.

“Transaction Management” on page 73.

“Programming Interface” on page 79.

“Application Notification” on page 89.

“OpenBase API” on page 91.

“Interactive SQL” on page 133.

“Advanced Administration” on page 141.

In this introductory section, we will introduce you to client-server
databases, and conclude with a description of our OpenBase licensing
scheme.

This chapter contains the following sections:

“Introduction” on page 12.

“Client-Server Architecture” on page 13.

“License Scheme” on page 14.

Users Guide OB-11

OpenBase Overview

Introduction

Introduction

For nearly a decade, the OpenBase family of products have been
enabling some of the most innovative business applications at work
today.

Used by thousands of companies spanning 37 countries, OpenBase is
proven in demanding corporate production environments. At the same
time, it is an ideal SQL-standard database choice for organizations who
also want a future-safe environment that lets them take advantage of
the latest object technologies and web tools.

OpenBase exceeds the industry standards by providing powerful
features not found in other database systems. OpenBase pioneered the
concept of true data file portability and change notification across
operating environments and the internet.

With its industrial-strength, fault-tolerant design, OpenBase continues
to be the choice of organizations that want both the flexibility of
innovative design and the proven reliability of a traditional production
environment.

OpenBase comes with a host of development tools to make building
applications straightforward. EOF adaptors for Apple's Enterprise
Objects Framework is included so you can build applications that
conform to the Apple standard for database retrieval. OpenBase's
Objective-C SQL API complements this with an interface for executing
dynamic SQL and retrieving results directly into your program
variables. A native Java Level 4 JDBC driver and C API’s for MacOS
and other platforms are also provided.

OB-12 Users Guide

OpenBase Overview
Client-Server Architecture

Client-Server Architecture

OpenBase can be described as a server program because it runs in the
background and serves the requests of client applications or applica-
tions that interface with users. While client programs run on the user's
local computer, OpenBase may be located on more powerful
computers that act as high-speed, central-control centers for your
applications. The advantages of using this architecture can be seen as
we review a traditional approach to PC databases.

In more traditional PC database systems, each user's program searches
for information by itself. This means that when the database files are
located at remote locations, all of the information must travel across
the network each time a search is executed. With large databases and
just a few users, this architecture can bring even small networks to a
halt.

In contrast to traditional PC systems, OpenBase sends only the infor-
mation required by client applications. All searches are performed
remotely and only requested information travels across the network to
client programs. This means that if a user looks for companies in
Connecticut, only Connecticut-based companies will be sent across the
network. This greatly improves perceived network performance and
makes modem database access practical.

Users Guide OB-13

OpenBase Overview

License Scheme

License Scheme

OpenBase can be licensed on a per-application, per-connection or per-
seat basis. With application based licenses each application is counted
as a user of the database. So a three application license allows three
applications to simultaneously use the database server. Connection
based licensing counts database connections regardless of origin. So
connections that originate from the same application are counted the
same as connections from different applications. Seat based licenses
count simultaneous users, regardless of the number of database appli-
cations they may be running. A seat is defined as one user logged on to
a particular CPU.

OpenBase International also offers a WebServer license for internet
applications. The OpenBase Webserver license offers a single machine
license for unlimited database access from the Internet or a web
browser based application. OpenBase Webserver is designed to work
with WebObjects.

OB-14 Users Guide

Getting Started

This section is meant to assist you in setting up OpenBase to work on
your network.

This chapter contains the following sections:

e “Installing OpenBase” on page 15.

< “Nameserver and Localhost Setup” on page 16.
= “OpenBase Manager” on page 17.

= “Sample Databases” on page 17.

= “Starting Databases” on page 18.

Installing OpenBase

Choose the following platforms to correctly install the OpenBase
server. Make sure to read the release notes before installing.

MacOS X Server

1. Log in as the Administrator.
2. Copy the OpenBase setup.app to your main UFS hard drive.

3.

4.

You can not run it from an HFS partition.

Run the OpenBase Setup.app program to install the OpenBase
server.

Reboot

Windows NT

1.
2. Run the Setup.exe program to install the OpenBase server.
3.

4. Reboot

Log in as the Administrator.

Launch the OpenBase manager and answer the questions.

OpenStep 4.2

1.
2.

Log in as the root user.

Install all packages on computers where the database server
process will run. Please read the README file on the Open-
Base distribution for any special instructions.

Users Guide OB-15

Getting Started
Nameserver and Localhost Setup

3. Install the OpenBase Framework package on all client com-
puters.

4. Copy /usr/database/bin/openisql and /usr/database/bin/
launchisql on the server computer to the same location on all
client computers.

5. Run the OpenBase Manager to complete the installation.
6. Reboot your computer.

After you have installed all the OpenBase packages on your server
computer you need to complete the installation by running the
OpenBase Manager application. The OpenBase Manager is located in
your /Local/Applications, /Network/Applications or /LocalApps
directory by default.

If you are not installing on MacOS X Server, the OpenBase Manager
will ask you a series of questions so that OpenBase can be configured
for your computing environment. On MacOS X Server the installation
program asks these questions instead. They are described as follows:

1. Would you like a 30 day demo of OpenBase? If you do not
have a license (or do not have your license handy) press the
Demo button. Later you can enter a license key but the demo
will get you going. Alternatively, if you have your license key
ready, press the License button.

2. Please select sort preferences for your language. If your lan-
guage is English we strongly recommend that you press OK
for the default settings. Other languages can be selected using
the Sort Language popup menu.

Finally, you will be presented with a form to enter your name and
address. If you chose to license your software in step 1 above, fields for
the serial number, authorization code, users and version will also be
displayed. This is described further in the next section.

Nameserver and Localhost Setup

Localhost Setup

OpenBase has been extended to include an ip address over-ride file
which helps the databases know which ip address they should use to
identify your local computer. If your computer has multiple ip
addresses or if you are having problems with the nameserver, you can
install a localhost file in Zusr/openbase which identifies the address
and host you wish to use.

OB-16 Users Guide

Getting Started
OpenBase Manager

Some of the installation procedures automatically install this file. If
you have problems you may want to edit the localhost file and make
sure the ip addresses are correct. Also, if you change the ip address of
your local computer you will need to edit this file to reflect the change.

NameserverHosts Setup

The NameserverHosts file in /Network/Library/OpenBase or Zusr/
openbase is mandatory. Almost all of the time you do not need to do
anything to it because the installation process sets it up for you.
However, if you need to change it, you should choose one or two
computers that are normally not turned off and list their ip addresses
in the NameserverHosts file. The computers must have OpenBase
installed on them. Here is an example:

107.23.45. 34

107. 23.45. 35

The nameserver acts as a directory of databases on your network.
Without this file installed the servers will not operate correctly.
Database clients rely on the nameserver when they connect to
database servers.

OpenBase Manager

Once you have installed OpenBase on your local computer, use
the workspace manager to launch the OpenBase Manager appli-
cation located in the /Network/Applications directory by
default (OpenBase/Apps on Windows NT). A database window
will appear listing a series of demo databases you can use to start
exploring OpenBase.

Sample Databases

OpenBase comes with a variety of sample databases. We provide these
databases so that you can begin using OpenBase right away with a
variety of examples.

The Movies and Rentals databases are used for the EOF and WebOb-
jects demos. Before using the EOF demos you may need to configure
them using a special script. Please see the OpenBase Release Notes for
details.

Users Guide OB-17

Getting Started
Starting Databases

The Company database sample is also provided for use with
OpenContacts, OpenOrder, and OpenBooks. Two databases, PEOPLE
and pubs, are also provided since some standard examples use these
databases to illustrate the use of SQL.

Starting Databases
To start a database:

1. Select the name of the database you want to start in the database
manager window. Since this manual uses the Movie database for
most of its examples, select the Movie database.

2. Press the Start button.

A yellow triangle icon should appear beside the database you started,
indicating that the database is in the process of starting. When the
database becomes available, a green dot will appear beside the
database.

In this chapter we covered the installation process and provided a brief
introduction to the OpenBase Manager. In the next chapter we will
discuss the OpenBase Manager application in more detail.

OB-18 Users Guide

3

OpenBase Manager

The OpenBase Manager application provides graphical tools for
managing database servers across your local area network. It includes
tools for viewing database tables, editing the database schema,
managing database security and starting database servers.

This chapter contains the following sections:

= “Managing Database Servers” on page 20.

= “Database Window” on page 20.

e “Starting Databases” on page 21.

e “Stopping Databases” on page 22.

e “Creating New Databases” on page 22.

= “Duplicating Databases” on page 22.

= “Changing Database Name and Host” on page 22.
e “Administration and Schema Design” on page 23.
< “Adding and Editing Database Users” on page 24.
e “Setting & Changing Table Permissions” on page 25.
= “Editing the Database Schema” on page 27.

= “Viewing Database Information” on page 31.

= “Preference Panel” on page 33.

= “Setting Preferences” on page 35.

e “Cleanup before exit” on page 35.

e “LogSQL to file” on page 35.

e “Date, Time, and Money” on page 35.

= “Localized Sorting” on page 35.

= “Change Password” on page 36.

= “Interactive SQL” on page 36.

= “Backup, Restore and Script Functions” on page 37.

Users Guide OB-19

OpenBase Manager
Managing Database Servers

Managing Database Servers

The OpenBase Manager application provides graphical tools for
managing database servers across your local area network. It includes
tools for viewing database tables, editing the database schema,
managing database security and starting database servers.

BB

‘Iil_.. [Il.&li

OpenBase Manager 6.8

e Figure 1: OpenBase Manager Database Window

Database Window

The OpenBase Manager Database Window provides a list of databases
and server hosts available. The window acts as a database control

OB-20 Users Guide

OpenBase Manager
Managing Database Servers

panel allowing users to perform a variety of functions including
starting and stopping databases remotely from across the network.

The icons in the first column show whether the databases are starting,
running, stopping or stopped. The different icon meanings are
explained as follows:

M (Yellow) The database is in the process of starting. Dur-
ing this time database files are checked and re-
built if necessary.

@ (Green) The database is running on the specified host
and is ready to be accessed by client programs.

(Yellow) The database is in the process of cleaning up be-
fore stopping.

(Red) The database has been stopped.
(Blue) The host is unreachable.

The buttons on the right of the database list provide easy access to a
number of common functions.

Starting Databases
To start a database:

1. Select the name of the database you want to start in the database
window.

2. Press the Start button. This may bring up a password window
asking for the password of the host where you are starting the
database. If so, type in the password and press the return key.
The password can be set in the OpenBase Manager Preferences
Panel.

A yellow triangle icon should appear beside the database you started,
indicating that the database is in the process of starting. The start-up
procedure may take several seconds, during which time the server
checks the data and loads some of the indexes into memory. When the
database becomes available for user programs, a green dot will appear
beside the database.

Users Guide OB-21

OpenBase Manager
Managing Database Servers

@ Stopping Databases

To stop databases select each one in the OpenBase Manager and press
the Stop button.

The icon beside the database will turn to a yellow dot, indicating that it
is shutting down. When the database actually stops, a red dot will be
displayed. While it is not necessary, it is a good idea to stop your
databases before shutting down your computer.

Creating New Databases

To create a new database press the New Database button. A panel will
appear allowing you to specify a new database nhame and the host
computer you would like your database to run on. The database name
must not contain any spaces. Select the host from the popup menu.
Press the Set button when you are finished. This will add the database
to your database list.

Before you can use your new database you need to start it. To start the
database, select the database and press the start button. When you do
this a new server process will be started on the destination computer.

Duplicating Databases

To duplicate a database, select the database in the OpenBase Manager
and press the Duplicate Database button. Only stopped databases can
be duplicated. Use the Configure button to edit the name of the new
database created.

Changing Database Name and Host

The OpenBase Manager provides controls for renaming the databases
and/or moving them between host computers.

Selecting a database and pressing the configure button will bring up
the configure database panel. From this panel you can rename your
database by editing the name field. Changing the Run-on-Host popup
will physically move the database from one host to another.

OB-22 Users Guide

OpenBase Manager
Managing Database Servers

=———— Configure Datahase

I ————

Database Name: | Movies |

Run on Host: [tours i]

Port Number: 1-.&.UTOM.E-.TIC- |

[] start Database at Boot

e Figure 2: Edit Window

To make your database automatically start when the specified
computer boots up, check the Start Database at Boot check-box.

Checking the Generate Replicated Keys check-box tells the server that
it needs to generate globally unique keys. This is necessary when you
have several databases that need to be synchronized periodically. Each
database will generate its own set of keys. Checking this box will bring
up a panel asking you to specify a unique number for this database.
You will need to do this for all databases in your replication group.

You can also set the encoding that the database will use internally for
representing data. ASCII encoding (based on NSNextstepStringEn-
coding) is recommended and will work with most single-character
languages. For two byte character sets we recommend that you try one
of the other character encodings.

Press the Set button to save any changes.

Administration and Schema Design

When you press the Administration button on a running database, the

Users Guide OB-23

OpenBase Manager
Managing Database Servers

Administration window will appear. This window allows you to edit
User access to the database, change the database schema, manage
online backups, and configure database replication. By selecting the
tabs on the top of the window you can go to the section you wish to
work with. The five different sections are: Adding and Editing
Database Users, Setting and Changing Table Permissions, Editing the
Database Schema, Database Backup Manager and Replication
Manager.

Adding and Editing Database Users

Adding users is not always necessary since the login always defaults to
the admin user. However, if you are running in an environment where
security is an issue, you may want to define users and set user access
permissions. The OpenBase Manager allows you to do this through it's
user management panel shown below.

e Figure 3: Administration Window User Manager

To edit the user information, select the user in the browser located on

OB-24 Users Guide

OpenBase Manager
Managing Database Servers

the left side of the window. The user information will display in the
editable fields on the right. You may edit this information and press
the Save button to save it to the database.

To add a new user, press the New button. A new user will be added to
the list. Select the new user, edit the user information and press the
Save button to save the user to the database.

To set a user's password, you need to press the Set Password button.
You will be asked for the old password (if one exists) and then asked to
type in the new password twice correctly. You will need to press the
Save button to save the changed password to the database.

If the information on the user window appears read-only, this may
mean that your current database login does not have permission to
update the users table. You may need to log in as the admin user to edit
this table.

Setting & Changing Table Permissions

The permissions panel of the Administration window allows you to
assign access to groups and users. By default all users have access to all
tables. However, as soon as you assign access to a particular table, that
table becomes inaccessible to all groups or users not assigned to it. It is
recommended that you don't touch the permissions if you aren't
concerned about security.

Users Guide OB-25

OpenBase Manager
Managing Database Servers

[0 =— Company@helsinki - Administration =—"—"rre——— HIHE
-~ Users * Access %_Schema *, Backup % Replication %,
® Users O Groups
,T User Permissions: [T
_SvE_APFS Read [i
_SYS_PERM Insert [
_SYS_RELATIONS Update [
_S¥S_REPLICATI
_SVS_TABLES Delete [
_S¥S_USERS
callHistory = —Group Permissions:
ratennr

e Figure 4: Administration - Permission Manager

The middle of the permissions panel contains controls to grant table
access to selected users or groups. The radio buttons on the upper right
toggle between assigning user access and group access.

You have the ability to give the user and the user's group, permission
to perform the four standard types of database operations on each
database table. These operations are select, insert, update, and delete.

To give users permission to access a set of tables, select the tables in the
viewer on the left, and select the users or groups on the right. Toggle
the check-boxes in the center of the view to grant and revoke access. A
*-' revokes access and a "+' grants access. When neither a plus of minus
is shown on a check-box it means that it will have no affect.

To keep unauthorized users from editing user information or granting
table permissions, you may want to revoke access to the tables
_SYS_USERS and _SYS_PERM for each user. Revoking permissions for
_SYS_TABLES will block users from creating, dropping, or renaming
tables.

SQL statements or transactions are allowed to be executed on tables
when the user or the user's group has the correct permission.
Otherwise an error is returned.

OB-26 Users Guide

OpenBase Manager
Managing Database Servers

Editing the Database Schema

The Database Schema panel on the Administration window allows
users to change the database schema and generate modify scripts for
later use. This schema editor has been written to provide a robust tool
for changing tables and column attributes on the fly.

| Company@helsinki - Administration B
 Users % Access ¥ Schema %, Backup Replication
[Tables | company TN

e Figure 5: Administration - Edit Table panel

The Database Schema panel has a two column browser on the left for
selecting database tables and columns, and a swap panel on the right
for displaying database attribute controls. As you select tables and
database columns the swap panel on the right will change to display
the attributes of the selected item.

The Natural Order of Data popup provides a way to arrange the
physical data in each table by an indexed column. This provides signif-
icant performance benefits in cases where data is accessed through a
foreign key or is sorted by the specific column. By clustering the
column the database is able to find records likely to be accessed
together on consecutive pages.

Users Guide OB-27

OpenBase Manager
Managing Database Servers

| Company@whelsinki - Administration 1
T X T Y \ PR N T \
Tabl
| dules] LOmpany, Column Name:
_SYS_AFPPS b4 _rowid | city |
_SY5_PERM I~ _limestamp
_3YS_RELATIOMNSH- _wersion Default Yalue:
_SYS_REPLICATION: address 1 | |
_SYS_TABLES I~ address2
_3%3_USERS 5 city
alldindarn L L

e Figure 6: Administration - Edit Column panel

To add a table, select an existing table in the first column of the
browser and press the New Table button. This will create a new table
entry with the default _rowid column. Change the default table name
to a name of your choosing and press enter so that the new name
appears in the browser on the left.

To add columns to a table, select an existing column in the table and
press the New Column button. A new column with a default name will
be added to the list. Edit the column name and attributes to your
choosing.

The schema editing tool which comes with the OpenBase Manager also
allows you to specify simple relationships. While you are free to use
compound relationships in your programs, we would like to
encourage you to use single clause relationships for best performance.

OB-28 Users Guide

OpenBase Manager
Managing Database Servers

[0 =—————"Company@helsinki - Administration =———FIB
Users _Access Schema *_Backup “_Replication %
| Lahles | EOmpany, Relationship Name:
SYS_APPS Iz rowid
= o i toContact:
Tsvs_PERM [[Ctimestamp [iaContacts !
_SYS_RELATIONSH- _wersion Column:
_SYES_REPLICATION- addressi | rowid |
_SYS_TABLES I- addressz =
_S%35_USERS 0] |eity Relates to: Set...
callHistary =] |company
categary - companyComments | contacts. company_id |
company = country

e Figure 7: Administration - Edit Relationships

To add a relationship, select the source column or a column that makes
up the relationship and press the Relationship To button. You will be
presented with a browser. Choose the matching column in the desti-
nation table and press the Ok button. You may then edit the character-
istics of the relationship in the panel provided.

When you are finished changing the database schema, press the Save
button to save the changes to the database or generate a script.

Database Backup Manager

OpenBase comes with an online backup mechanism which allows you
to schedule complete data dumps of the database to timestamped
ASCII files. The Database Backup Manager allows you to schedule
when you would like the backup to take place and where the backup
files should be placed.

Before you can get the backup system to work, however, you need to
setup a backup server (called databackup) to point to the database you
want to backup. To set this up you need to choose Setup Backup Server

Users Guide OB-29

OpenBase Manager
Managing Database Servers

from the edit menu. Add your database to the list and the backup
server will read the schedule that you setup on the Backup Manager.

Once the databackup program knows which databases to monitor, it
will read the backup schedule each day around midnight and schedule
the backups for the following day.

When setting the backup schedule for your databases it is very
important that you specify a valid pathname (with no spaces). Without
a valid path the backup will not work.

Replication Manager

The Replication Manager allows you to specify which tables you
would like to synchronize with other databases. This is useful when
you have two databases which share the same data (or some of the
same data). By using replication you can keep the data in one database
in sync with another.

Pressing the new button on the Replication Manager interface brings
up a login panel which allows you to login to the remote database you
want to synchronize with. Then all you need to do is specify a table to
replicate and tell the replication mechanism what you want to do about
conflicts.

Sometimes conflicts arise when two people from different locations
edit the same record. The rules regarding how to deal with these
conflicts are simple. Either the local database has priority and
overwrites changes made by the remote master database or the remote
database has priority.

When there is a conflict and changes will be overwritten you can elect
to create a backup of the overwritten information into a separate table.
Backup tables are created on an as needed basis and include all infor-
mation overwritten by the replication process.

The Reset Date button is for resetting the last backup date. It forces the
replication to compare all records and merge the data in both tables.
This is important to do if you drop a table because you want to regen-
erate it. In this case if you do not reset the date it may also delete all the
records in other replicated databases. Resetting the date will cause the
dropped table to be regenerated.

OB-30 Users Guide

OpenBase Manager
Managing Database Servers

@ Viewing Database Information

The OpenBase Manager allows you to view and edit database table
information using the Database Viewer. To do this select a started
database (one with a green dot) and press the View Data button. This
will bring up the Data Viewer window:

|IZ| = Companv@tours - Data¥Viewer=——— El

e Figure 8: Data Viewer Window

Data Viewer Window

The table names listed on the left of the Data Viewer window offers an
easy mechanism for viewing choosing what information you want to
view. Selecting a table will show the data for that table on the right.

The Data Viewer allows you to edit as well as view table content. As
long as the record you select hasn't been locked by another user, you
can double click to select and change information. The data viewer

Users Guide OB-31

OpenBase Manager
Managing Database Servers

keeps two people from editing the same row of information so that
your changes will not be overwritten by other users.

If you are interested in seeing OpenBase system tables in addition to
your own tables, you can check the show all tables checkbox. When
you do this the table list is refreshed to include all of the system tables.
We strongly recommend that you do not try to edit or change any of
the information in the system tables directly.

The columns on the data viewer may be reorganized allowing you to
view information in a different order. You can change the position of a
column by pointing to the column's title, pressing and holding down
the mouse button, and dragging the title to its new location. When you
let go of the mouse, the columns will reorganize and the SQL will
change in the field at the bottom of the window.

The field entitled Maximum Fetch at the top right enables you to
specify the maximum number of rows you wish to be returned.
Pressing the Execute-SQL button will refresh the display using the new
maximum.

Selecting on the column titles at the top of the Data Viewer will bring
up a search panel giving you the ability to narrow the search results or
specify sort ordering.

e Figure 9: Data Viewer Search Window

The Hide button on the search panel allows you to hide the selected
column from the result. Pressing Cancel will return you to the Data
Viewer and will leave the SQL unchanged.

The second tab on the Data Viewer window allows you to create
custom queries. This is useful if you have a select that you need to
perform frequently. All you need to do is enter your SQL in the space
provided (or choose a template to edit) and name it something you will
remember. Only select statements are allowed. When you go back to

OB-32 Users Guide

OpenBase Manager
Managing Database Servers

the Data Viewer, your query will show up in the box just below the
table list. Selecting the title will run the query.

Finally, the last tab on the Data Viewer window gives you the ability to
send any SQL statement to the database. If you are using MacOS X
Server or OpenStep you should use openisql for this function.
However, this panel is useful for Windows NT users who do not have
a command line tool.

Preference Panel

The OpenBase Manager has a preferences panel to personalize your
view of date, time, and money data types throughout all of your appli-
cations, as well as set various parameters for your OpenBase databases.
For many of these parameters to take affect, databases must be
restarted. To display the preferences panel, select the Preferences menu
item located under Info in your main menu.

Users Guide OB-33

OpenBase Manager
Managing Database Servers

—————— [

tours i]

International sort order; [S0rt By: 1]

I_a.hcdafghijklm.nnpqrstuva30123455?33 |

e Figure 10: Preferences Panel

OB-34 Users Guide

OpenBase Manager
Managing Database Servers

Setting Preferences

Preferences need to be set for each of the database server hosts on your
network. By selecting the desired host name on the Server Host popup
you can view and set the preferences for each host. The preference
settings are described as follows:

Cleanup before exit

Configures the server to go through a database cleanup process before
stopping the database under normal conditions. Checking this option
reduces your start-up time if the database needs to do recovery.

Log SQL to file

Tells locally running servers to log SQL commands to a log file located
in the directory specified in the Log File field. The generated log file,
combined with a backup of the database, can be used to roll forward
backup databases in case of hard disk failures.

Date, Time, and Money

Specifying preferences for date, time and money will change the
default format for databases on the specified host. If you would like to
display several different formats at the same time in your program,
you will need to change these formats programmatically. The datetime
type only uses the default NeXT calendar date format, so it is not listed
on this panel.

Localized Sorting

Since different languages have different characters and sorting rules,
the international sort order section provides a way to specify upper
and lower case letters in the natural sort order. The top text field
should contain the set of lower case letters in order of their importance
and the bottom text field should contain capital letters in the same
order. Letters that are not specified in this list will assume their ASCII
value and in a sorted list will appear after the letters in the text fields.

Users Guide OB-35

OpenBase Manager
Managing Database Servers

Change Password

For added security you can specify a password for each database
server host. In order to start, stop, duplicate, configure or add
databases you must have the host password (if one exists). To set the
password for the host selected in the popup list press the Change
Password button.

EJ Interactive SQL

OpenlISQL allows you to execute SQL from a terminal window.
Pressing the Interactive SQL Terminal menu item on the Tools menu
will launch the OpenlISQL program and automatically connect it to the
selected database. Please refer to the chapter on OpenISQL for more
information on how to use this program.

e Figure 11: I1SQL Window

OB-36 Users Guide

OpenBase Manager
Managing Database Servers

Backup, Restore and Script Functions

The best way to backup your databases is to make copies of them. We
recommend that you make regular backup copies of your databases
located in Zusr/openbase/Databases (OpenBase/Databases on
WindowsNT computers). If you need to restore a database, stop the
database, remove the database’s work directory in
/usr/openbase/work and replace the database files with the backup.

The OpenBase manager also provides some tools for transferring
database information to and from a bulk saved ASCII format. The
Backup to ASCII and Restore from ASCII functions are located on the
Tools menu. These functions transfer all information in the database
including archived Objects and BLOBs. It does not save user accounts
or permissions.

Also included on the Tools menu is a function for executing OpenISQL
scripts. These can either be schema upgrade scripts generated by the
Edit Database Schema panel or it can be an ASCII file with a list of
OpenlSQL commands.

Users Guide OB-37

OpenBase Manager
Managing Database Servers

OB-38 Users Guide

OpenBase SQL
Language

In this chapter we will discuss the Standard Query Language (SQL),
the means by which client applications communicate with database
server programs and to lay the groundwork for understanding the
Objective-C API. This chapter is only meant to give you a basic under-
standing of how SQL can be used to create, read and manage database
information. For more in depth information we recommend that you
refer to a book on ANSI SQL.

SQL can be entered and executed using the OpenlSQL program
described later in this manual. Please use OpenISQL for experimenting
with the SQL described in this chapter.

This chapter contains the following sections:

e “SQL Standards” on page 41.

e “SQL Statements” on page 41.

= “Joins” on page 42.

= “Inner & Outer Joins” on page 43.

= “Derived columns” on page 44.

e “The FROM clause explained” on page 46.
e “The WHERE clause” on page 47.

e “The ORDER BY clause” on page 48.

= “Value Conversion Functions” on page 49.
= “String Manipulation Functions” on page 50.
= “LENGTH(string)” on page 50.

= “INDEXOF(string, substring)” on page 50.

e “REPLACE(string, startpos, length, replacestring)” on
page 51.
e “SUBSTRING(string, startpos, length)” on page 51.

e “UPPER(string), LOWER(string)” on page 51.
e “RIGHT(string, length)” on page 52.

e “| EFT(string, length)” on page 52.

e “TRIM(string)” on page 52.

= “PROPER(string)” on page 52.

Users Guide OB-39

OpenBase SQL Language

= “IF(condition, returnValuelfTrue, retValuelfFalse)” on

page 52.
e “CHOOSE(number, valuel, value2,...).” on page 53.

= “Aggregate Functions and GROUP BY” on page 53.
= “Subqueries” on page 54.

= “Inserting Database Information” on page 55.
= “Updating Database Records’ on page 56.

« “Deleting Database Records” on page 58.

= “Expressing String Values” on page 58.

= “Creating Tables” on page 59.

= “Creating Indexes” on page 64.

= “Dropping and Renaming Tables” on page 65.
= “Changing Database Schemas” on page 65.

e “ALTER TABLE” on page 65.

= “Changing User Access” on page 68.

e “GRANT... ACCESS... TO” on page 68.

OB-40 Users Guide

OpenBase SQL Language
SQL Standards

SQL Standards

First we would like to dispel a myth about SQL standards. These days
a lot of emphasis is placed on SQL syntax standards. The problem is
that the standardization stops with the easiest part -- the SQL syntax.

Every database server uses different communication mechanisms,
embedded SQL, return codes, library calls, and data retrieval
techniques. Some provide dynamic SQL mechanisms, allowing your
application to build the SQL dynamically (i.e. OpenBase and Sybase),
while others require a precompiler that converts the static SQL in your
applications to some other form. Every server seems to be completely
different, so the fact that they support the ANSI standard syntax, for
instance, does not automatically make your application portable to
other systems.

Enterprise Objects Framework has standardized the interface to make
applications portable, yet at the same time isolating them from the SQL
syntax. This is a more important standard because it solves the
problem of portability between back-end servers.

Please note that while OpenBase supports standard SQL, we have
taken the liberty to deviate from the standards in order to more closely
match the needs of customers.

SQL Statements
SELECT...FROM

Select statements can be the most complicated of all SQL statements. It
is important to note that select statements are the only statements that
will operate on multiple tables at the same time. For this reason, select
statements support a slightly different, although standard, SQL syntax.
This will be explained further when we talk about joins between tables,
but let's first examine a simple SELECT statement.

SELECT CATEGORY, TITLE, REVENUE FROM MOVI E WHERE REVENUE
> 10000000

Users Guide OB-41

OpenBase SQL Language

Joins

Joins

SELECT is a keyword that specifies that the following will be a list of
information to be returned by the search.

CATEGORY specifies that the MOVIE CATEGORY is the first column
of the result.

TITLE specifies that the MOVIE TITLE is the second column of the
result.

REVENUE specifies that the MOVIE REVENUE is the third column of
the result.

FROM is a keyword that tells the database that the following will be a
list of tables.

MOVIE specifies that these columns come from the MOVIE table.

WHERE is a keyword that specifies that the following will be a list of
search conditions.

REVENUE > 10000000 specifies that we want all of the movies in the
database that have a REVENUE of more than $10,000,000.

Select statements like the one shown above provide an easy way to
retrieve specific sets of information from the database. This first
example only retrieves information from a single table. However, it is
often necessary to retrieve data from several related tables at the same
time. To do this we use joins.

A join is necessary when you want to view two tables with related
information at the same time.

Using the Movies database you can display each movie title along with
the studio name from the STUDIO table. The relationship can be made
using the STUDIO_ID columns in each of the tables because each
MOVIE's STUDIO_ID value points to a corresponding STUDIO_ID
value in the STUDIO table. This enables the server to match movies
with their studios.

OB-42 Users Guide

OpenBase SQL Language
Inner & Outer Joins

SELECT nov. TI TLE, nov. CATEGORY, stu. NAVE FROM MOVI E nov,
STUDI O stu WHERE nov. STUDIO I D = stu. STUDIO_ | D

This example uses the table aliases mov and stu to tell the server which
table the TITLE, CATEGORY, and STUDIO columns come from. Table
aliases or table names should be used whenever performing joins.

Inner & Outer Joins

The example above uses an inner join to match records in the MOVIE
table with records in the STUDIO table. Inner joins only return
complete matches, so movies with no matching studio will be removed
from the result. However, outer joins include records even when there
is no match.

OpenBase supports left outer joins, meaning that records from tables
specified first are included even when they cannot be matched with
records from tables on the right. An outer join is specified by using the
* operator in place of the = operator in the WHERE statement. Here is
an example:

SELECT nov. TI TLE, nov. CATEGORY, stu. NAVE FROM MOVI E nov,
STUDI O stu WHERE nov. STUDIO_ID * stu. STUDIO ID

The order of the tables in the FROM clause determine the direction of
the outer join. Following is a more advanced example of a join.

SELECT nov. Tl TLE, nov. CATEGORY, tal.Fl RST_NAME,

tal . LAST_NAME, rol.ROLE_NAME FROM MOVI E nmov, TALENT tal,
MOVI E_RCLE rol WHERE nov. MOVIE_ID = rol . MOVI E_I D AND
rol . TALENT_ID = tal . TALENT_IAND tal . FI RST_NAME ? ' Jon’
CRDER BY nov. CATEGCRY, nov. Tl TLE

This complex query joins three tables together and returns each movie
role, who played the role and the movie the role was played in. The
last constraint narrows the query even more by only returning rows
where the actor’s firstname sounds like Jon. A more detailed expla-
nation follows.

Users Guide OB-43

OpenBase SQL Language

Derived columns

SELECT mov.TITLE, mov.CATEGORY, tal.FIRST_NAME,
tal. LAST_NAME, rol. ROLE_NAME

This specifies the columns of the result. Each column name is preceded
by a table alias so the database will know which table each value comes
from.

FROM MOVIE mov, TALENT tal, MOVIE_ROLE rol

This specifies the tables and table aliases used in the search. The aliases
tal and rol are optional as long as you specify the full table name in
front of each column in the query.

WHERE mov.MOVIE_ID = rol. MOVIE_ID

This constraint joins the movies in the MOVIE table to roles located in
the MOVIE_ROLE table.

AND rol. TALENT_ID = tal. TALENT_ID

This joins each movie role with a talent. Failing to include these
constraints will have a multiplication effect on the results, so it is very
important to define how the tables relate to one another.

AND tal.FIRST_NAME ? Jon’

This constraint narrows the search by only returning result sets where
the actor’s FIRST_NAME sounds like Jon. OpenBase supports a
modified soundex function designated by the operator ‘?’. This is one
of those OpenBase specific extensions to SQL that we mentioned
earlier in this chapter.

ORDER BY mov.CATEGORY, mov.TITLE

This simply orders the result rows by CATEGORY and TITLE.

Derived columns

Derived columns return calculated values or concatenated strings.
Normally derived columns do not map directly to columns in the
database, but they often use column values. As with regular result
columns, derived columns are expressed after the SELECT keyword.

OB-44 Users Guide

OpenBase SQL Language
Derived columns

For instance, the following SELECT statement concatenates the
FIRST_NAME, a space and the LAST_NAME of each record in the
TALENT table.

SELECT FI RST_NAME+" “+LAST_NAME FROM TALENT

Your output might look like this:

Harrison Ford
George Lucas

Mark Hammil

Marlon Brando
Dianne Keaton
Francis Ford Coppola
Al Pacino

Humphrey Bogart

Another example uses a function to return only the first 3 characters of
each concatenated name. A variety of functions are discussed later in
this chapter.

SELECT LEFT(FI RST_NAME+" “+LAST_NAME, 3) FROM TALENT

Using the LEFT() function your output might look like this:

Har
Geo
Mar
Mar
Dia
Fra
Al
Hum

Another example calculates 10% tax on the revenue of each MOVIE in
the Movie database:

SELECT (REVENUE * 0.10) FROM MOVI E

Users Guide OB-45

OpenBase SQL Language

Derived columns

In this case your output might look like this:

$1,440,000.00
$20,000.00
$30,000.00
$20,000.00

You may also mix string concatenations with value calculations as
follows:

SELECT “tax = “]; (REVENUE * 0.10) FROM MOVI E

In this case the calculation is done before the string concatenation. Here
is some example output:

tax = $1,440,000.00
tax = $20,000.00
tax = $30,000.00
tax = $20,000.00

Derived columns can be extremely useful for changing the form of data
returned from the database and providing summary information for
database records.

The FROM clause explained

The FROM clause in reference to the SELECT statement specifies the
tables that will be used in the search. Using the FROM clause, you can
also specify table abbreviations to be used when joining tables.
Following are some examples of FROM clauses:

FROM MOVIE

In this case, all columns in the query are from the purchase table and
no abbreviations are needed. However, the following example shows
the definition of table abbreviations.

FROM MOVIE mov, STUDIO stu

In this example, two tables are specified and abbreviations are
specified. These abbreviations should be used throughout the query to

OB-46 Users Guide

OpenBase SQL Language
Derived columns

tell OpenBase which table each column belongs to. When joining tables
you should specify and use table aliases.

The WHERE clause

The where clause specifies the scope of the action to be performed by
the SQL statement. The following simple expressions use the letters A
and B to denote column names, values or other expressions.

Expression Description

A=B include record if A and B have the same
value.

Al!=B include record if A is not equal to B.

A<B include record if A is less than B

A<=B include record if A is less than or equal to B

A>B include record if A is greater than B

A>=B include record if A is greater than or equal to
B

A?B include record if A sounds like B

A IN (B) include record if A is in the list of values
denoted by B. In this case B may be a comma
separated list of values or a subselect.

A NOT IN (B) include record if A is NOT in the list of
values denoted by B. In this case B may be a
comma separated list of values or a subselect.

EXISTS (B) include record if B exists, where B is a corre-
lated select statement which returns one or
more records.

A LIKEB include record if A matches the wild card

pattern B

Users Guide OB-47

OpenBase SQL Language

Derived columns

You may include the keyword NOT before each of the previous expres-
sions to negate it. For instance, if you don't want A to equal B, you
could write the expression:

NOTA=B

Operators can be strung together to produce multifaceted sets of
criteria by using the AND and OR keywords. Here is an example of
two criteria, both of which must be true for each record in the result.

FIRST_NAME ='Peter' AND LAST_NAME >'P’

The EXISTS and NOT EXISTS keywords allow you to easily perform
queries which list rows that do not match with records in another table.
For instance, perhaps you want to select records in the MOVIE table
where correlated records do not exist in the STUDIO table. The
following example will list all movies which do not have studios on
file.

SELECT * FROM MOVI E nov WHERE NOT EXI STS (SELECT
STUDI O | D FROM STUDI O stu WHERE nov. STUDIO I D =
stu. STUDI O_I D)

In this example, rows are only returned when matching records are not
found in the subselect.

While the WHERE clause can be used with SELECT, UPDATE,
INSERT, and DELETE queries, the SELECT query is the only one that
operates on multiple tables. However, all SQL operations support
subqueries which can be used to narrow a search using multiple tables.

The ORDER BY clause

The ORDER BY clause will order records in ascending order by
default. The following ORDER BY statement incorporates the ASC (for
ascending order) and DESC (for descending order) keywords to tell the
server what order you would like to sort the results in.

ORDER BY LAST_NAME DESC, FI RST_NAME ASC

In this case your output might look like this:

OB-48 Users Guide

OpenBase SQL Language
Value Conversion Functions

Zanin Bruno
Young Sean
Yoba Malik
Wright Robin
Wood Jr. Edward D.
Winters Shelley

Remember that if you are joining tables you will need to specify a table
name or abbreviation for each column listed. Here is an example:

ORDER BY tal.LAST_NAME, tal.FIRST_NAME

Value Conversion Functions

Value conversion functions provide a method to convert values
between SQL types or control the return type of calculations.

TOCHAR(value)

Converts value into a character string. The value parameter can be of
any type.

TODOUBLE(value)

Converts value to a double value. The value parameter can be of any
type.

TOINT(value)

Converts value to an integer value. The value parameter can be of any
type.

TOLONG(value)

Converts value to a long value. The value parameter can be of any
type.

TOLONGLONG(value)

Converts value to a long long value. The value parameter can be of
any type.

Users Guide OB-49

OpenBase SQL Language
String Manipulation Functions

TOMONEY (value)

Converts value to a money value. The value parameter can be of any
type.

String Manipulation Functions

This section describes the SQL functions that can be performed on
strings. These include:

e “L ENGTH(string)” on page 50.

e “INDEXOF(string, substring)’” on page 50.

= “REPLACE(string, startpos, length, replacestring)” on
page 51.
e “SUBSTRING(string, startpos, length)” on page 51.

e “UPPER(string), LOWER(string)” on page 51.
e “RIGHT(string, length)” on page 52.

= “LEFT(string, length)” on page 52.

= “TRIM(string)” on page 52.

e “PROPER(string)” on page 52.

= “|F(condition, returnValuelfTrue, retValuelfFalse)” on
page 52.
“CHOOSE(number, valuel, value2,...).” on page 53.

LENGTH(string)
Returns the length of string.

Example: Bring back all of the movies which have a title longer than 10
characters.

SELECT LENGTH(TI TLE), TI TLE FROM MOVI E WHERE
LENGTH(TI TLE) > 10

INDEXOF(string, substring)

Returns the numerical index of substring in string or -1 if the substring
cannot be found.

OB-50 Users Guide

OpenBase SQL Language
String Manipulation Functions

Example: Select all movie titles which have the word 'the’ in the title.

SELECT | NDEXOF(TI TLE, ' the'), TITLE FROV MOWNEERE
| NDEXOF(TI TLE, ' the') >= 0

REPLACE(string, startpos, length, replacestring)

Inserts replacestring into string at startpos and replaces length characters.
The replacestring is not truncated by length. The entire replacement
string is inserted at the specified point.

Example: Select all movie titles and replace the first word with
'BLANK'

SELECT REPLACE(TI TLE, 0, I NDEXOF(TITLE,"' "), 'BLANK '),
TITLE from MOVI E where | NDEXOF(TITLE," ') >= 0

SUBSTRING(string, startpos, length)

Returns the substring of string starting at startpos and including length
characters.

Example: Select the three first characters of all movie titles.

SELECT SUBSTRI NG TI TLE, 0, 3) from MOVI E

UPPER(string), LOWER(string)
Converts string to upper or lower case.

Example: Select movie titles in upper and lower case.

SELECT UPPER(TI TLE) from MOVI E

SELECT LOVER(TI TLE) from MOWI E

Users Guide OB-51

OpenBase SQL Language
String Manipulation Functions

RIGHT(string, length)
Returns the right portion of string with length characters.

Example: Select the right 5 characters of all movie titles.

SELECT RI GHT(TI TLE, 5) from MOVI E

LEFT(string, length)
Returns the left portion of string with length characters.

Example: Select the first 5 characters of all movie titles.

SELECT LEFT(TITLE, 5) from MOWIE

TRIM(string)

Removes extra blank spaces from string.

SELECT TRIM TI TLE) from MOVIE

PROPER(string)
Capitalizes the first letter of each word in string.

Example: Show all movie titles with proper capitalization.

SELECT PROPER(TI TLE) from MOVI E

IF(condition, returnValuelfTrue, retValuelfFalse)

Returns conditional values depending on the expression condition. All
values and expressions can be made up of multiple elements.

Example: Return the movie title or the string 'Smaller Than 10" for
movie titles that are shorter than 10 characters.

OB-52 Users Guide

OpenBase SQL Language
Aggregate Functions and GROUP BY

SELECT | F((LENGTH(TI TLE) < 10), 'Snaller Than 10', TITLE
MOVI E) FROM MOVI E

CHOOSE(number, valuel, value2,...).

Returns the value in the location indicated by number. Values may be
constants, column names, expressions or any combination of these.

Example: Return 'valuel' for each of the movie titles. 1 could be
replaced by a calculation or database column.

SELECT CHOOSE(1, *“value0”, “valuel”, “value2"), TITLE
FROM MOVI E

Aggregate Functions and GROUP BY

Aggregate functions and the optional GROUP BY clause provide ways
to retrieve summary information about table content. If no GROUP BY
clause is specified in the SQL statement, aggregate functions will
return a single summary row for all information satisfying the WHERE
constraint. Otherwise, the information will be placed in groups based
on a common set of values, and a summary line will be generated for
each.

The aggregate functions provided in this release are as follows:

Aggregate Function Description

count(*) Returns the number of rows returned
for each group.

sum(columnName) Returns the sum of the column
columnName for each group.

avg(columnName) Returns the average of the column
columnName for each group.

Users Guide OB-53

OpenBase SQL Language
Subqueries

Aggregate Function Description

min(columnName) Returns the minimum value of
column columnName for each group.

max(columnName) Returns the maximum value of
column columnName for each group.

The GROUP BY clause allows you to group results with common
values. It works similarly to the ORDER BY clause, in that columns are
specified and separated by commas. Here is an example:

SELECT count (*) MOWIES, sun{nmov. REVENUE), stu. NAVE
STUDI O_NAME, nov. CATEGORY FROM MOVI E npv, STUDI O stu
WHERE nov. STUDIO | D = stu. STUDI O | D AND nov. RATING = 'R
GROUP BY stu. NAME, nov. CATEGORY

In this example, only studios with a movie rating of ‘R’ are returned.
Results are then grouped by the studio name and movie category.
Finally, each group is converted into a single row of summary infor-
mation. This example also demonstrates how you can specify columns
from the GROUP BY section in the select statement to give the result
more meaning.

The GROUP BY clause should be specified after the WHERE clause
and before the ORDER BY clause (if you use these optional clauses).

Subqueries

Subqueries are useful when you want to include values from another
table in a search without creating a direct join to the table. This might
be the case if you are spanning a relationship to a second table only to
qualify records in the first table.

Subqueries are entered between parentheses and normally appear in
the where clause. However, they can also be used as a data source for
any function parameter.

OB-54 Users Guide

OpenBase SQL Language
Inserting Database Information

Example: In what movie did they have a character referred to as 'The
Godfather'?

Here is a subquery that uses the IN operator to answer this question:

select TITLE from MOVIE where MOVIE_ID in (sel ect
t2. MOVIE_ID from MOVI E_ROLE t2 WHERE t 2. ROLE_NAME = * The
Codf at her’)

The above example is referred to as a non-correlated subquery because
the select in the subquery is only done once for all records searched in
the movie table. In other words, the subquery does not have a
qualifier that refers back to the parent select statement. The subquery
can stand on its own. However, this is not true for the next example.

Here is a statement that uses the EXISTS operator and a correlated
subquery to answer this question:

select TITLEt1 from MWIE t1 where EXI STS (sel ect
t2. MOVIE_ID from MOVI E_ ROLE t2 where t2. ROLE_NAME = ‘ The
Codfather’ and t1. MOVIE_ID = t2. MOVIE_I D)

This is a correlated subquery because of the t1.MOVIE_ID =
t2.MOVIE_ID in the subquery. tl is an alias for the MOVIE table in the
parent select. For each record searched in the MOVIE table the
subselect needs to be re-evaluated to see if records exist. For this reason
correlated subqueries are generally less efficient than non-correlated
subqueries. However, they can be very useful in some circumstances.

Inserting Database Information

INSERT... INTO

The INSERT statement is used to create new records and set initial field
values. In terms of an application, the insert statement might be used
when the user presses a New button. Here is the basic format of the
INSERT statement:

Users Guide OB-55

OpenBase SQL Language
Updating Database Records

INSERT INTO <table> (<field1>, <field2>..) VALUES (<valuel>,
<value2>...)

Here is an example of an INSERT statement with a detailed description
of each part:

I NSERT | NTO TALENT (FI RST_NAME, LAST_NAME, TALENT_I D)
VALUES ('John',"Smith', 700)

INSERT INTO TALENT - tells the database that you are inserting a
group of values into the TALENT table.

(FIRST_NAME, LAST_NAME, TALENT_ID) specifies the fields or
table columns that you are inserting.

VALUES tells the database that the following values correspond to the
fields just specified.

(John', 'Smith’, 700) are the values that correspond to and will be
inserted into the FIRST_NAME, LAST_NAME and TALENT_ID
columns.

Updating Database Records
UPDATE...SET

The UPDATE statement is used to update values in the database.
Update statements have the ability to update multiple records at a time
depending on the search constraints given.

Here is an example of an UPDATE statement:

UPDATE <Table Name> SET <fieldl> = <valuel>
[,<field2>=<value2>...] where <search conditions>

The following example identifies a single record by its _rowid column
and changes the FIRST_NAME value to Bill.

UPDATE TALENT SET FIRST_NAME = 'Bill" WHERE _rowid = 100

OB-56 Users Guide

OpenBase SQL Language
Updating Database Records

UPDATE is a keyword that tells the database that you want to update
the values in existing records.

TALENT is the name of the table whose records will be updated.

SET is a keyword that tells the database that the following list will be a
list of columns and corresponding values.

FIRST_NAME = 'Bill' means that every record in the result will have its
first name set to Bill.

WHERE is a keyword that specifies that there will be a list of search
conditions.

_rowid = 100 is the search condition that identifies a single record by
its _rowid column.

The following example updates multiple records with one SQL
statement. Let's say that the rating has been changed from G to PG for
all movies with a drama category. The LANGUAGE field in this
example does not have to be updated (let’s say that 100 is the code for
English Language), but we update it anyway to demonstrate that
multiple changes can be specified by separating them with commas.

UPDATE MOVI E SET RATING=' PG, LANGUAGE = 100 WHERE
CATEGORY = 'Drama' AND RATING = 'G

UPDATE is a keyword that tells the database that you want to update
the values in existing records.

MOVIE is the name of the table whose records will be updated.

SET is a keyword that tells the database that the following list will be a
list of columns and corresponding values.

RATING='PG', means that every record in the result will have its
RATING column changed to PG.

LANGUAGE= 100 means that every record in the result will have its
LANGUAGE column value changed to 100.

WHERE is a keyword that specifies that there will be a list of search
conditions.

Users Guide OB-57

OpenBase SQL Language
Deleting Database Records

CATEGORY = 'Drama’ AND RATING ='G' tells the database that you
are looking for records whose CATEGORY is '‘Drama’ and RATING is
G

Deleting Database Records

DELETE FROM

DELETE FROM provides a way to remove records from a table.
Deleting records from a table works similarly to updating in that the
WHERE clause specifies which records will be affected.

Following is the general format for the DELETE statement:
DELETE FROM <Table Name> WHERE <conditions>

Here are a few examples of how the DELETE statement can be used:

DELETE FROM TALENT WHERE _rowid = 100

DELETE FROM TALENT WHERE FI RST_NAME = 'Bil |

You may also want to delete a set of records that have common charac-
teristics. For instance, the following SQL statement will delete all
records with a CATEGORY of Drama and RATING of PG.

DELETE FROM MOVI E WHERE CATEGORY = 'Drama’ and RATING =
' PG

This concludes our overview of the basic set of SQL statements. Next
we will discuss some more general SQL topics.

Expressing String Values

There are a few different ways to express string values in your SQL
statements. Traditionally, an SQL string must be enclosed in single or

OB-58 Users Guide

OpenBase SQL Language
Creating Tables

double quotes. Here is an example using a table that keeps track of
messages:

insert into messages (note) values (‘Joe Called")

The string "Joe Called' is enclosed in quotes to tell OpenBase that it is a
string value. However, sometimes you will need to store a string that
has quotes in it. You have the choice of handling this in one of a few
ways. Here is a description of the standard way:

insert into messages (note) values (‘Joe said he can\'t call back")

or

insert into messages (note) values (‘Joe said he can’'t call back’)

This method requires you to programmatically insert a backslash "\' or
a second quote for each instance of a quote in your string that matches
the boundary quotes.

Creating Tables

CREATE TABLE

The CREATE TABLE keyword at the beginning of an SQL statement
tells OpenBase that you want to create a new table. Creating new tables
can also be accomplished by using the graphical tools provided with
the OpenBase Manager. However, this section will give you an idea of
what happens on the SQL level.

The general format of the create statement is as follows:

CREATE TABLE <Table Name> (<field> <type> [NOT NULL]
[[CLUSTERED] [UNIQUE] INDEX] [default ‘<value>’]
[REFERENCES <table>.<column>], ...)

Users Guide OB-59

OpenBase SQL Language
Creating Tables

NOT NULL

The NOT NULL clause makes sure that the column always has a value
when inserting records. Any insertion that doesn’t include a value for
the column will fail.

NULLs should not be confused with empty strings. An empty string
(“) is a value where as a NULL is the absence of a value.

INDEX and UNIQUE INDEX

Indexes are necessary to provide better performance when joining
tables or searching information. The UNIQUE keyword indicates that
the column value must be unique in order to be inserted into the table.

CLUSTERED INDEX and CLUSTERED UNIQUE
INDEX

Adding the CLUSTERED keyword to your index definition arranges
the physical data in the table by the indexed column. This provides
significant performance benefits in cases where data is accessed
through a foreign key or is sorted by the specific column. By clustering
the column the database is able to find records likely to be accessed
together on consecutive pages. Only one column per table can be used
with clustering.

REFERENCES table.column

The REFERENCES keyword provide referential integrity checking
between tables. Records in the target table will not be deleted if they
are referenced by records in the table with the references clause.
Deleting records that are referenced by another table will return an
error.

Here is an example of creating a table called customer with fields
number, name, and balance:

CREATE TABLE custoner (nunber |onglong NOT NULL UN QUE
I NDEX, nanme char (30) NOT NULLDEFAULT °‘your Nane’,
bal ance noney)

OB-60 Users Guide

OpenBase SQL Language
Creating Tables

The numbers that are specified for the character lengths in the above
example (name char(30) means the string length is 30) will be enforced
by the database server. All character lengths are assumed to be
between 0 and 1024 characters. If you want to store text information
longer than 1024 you will need to use an Object column.

Following is a list of data types and their Objective-C equivalents,
supported by OpenBase:

SQL type C type Description

char(n) (char *) String of n characters
varchar (char *) Variable length string
float (double) Double value

int (int) Integer

long (long) Long integer
longlong (long long) Long Long

money (long long) Money

date (char *) Date

time (char *) Time

datetime (double) EOF datetime

object (void *) Object

All values may be expressed and retrieved as strings. OpenBase will
automatically convert the data to the appropriate representations.

The object data-type is used to store BLOB (Binary Large OBjects) ids
for image or other binary data. Object fields have a special mechanism
that will automatically erase old BLOBs when updated with a new
BLOB id. When records are deleted, the database will also automati-
cally remove associated BLOBs.

In addition to the column's data-type, column specifications within
create statements can include NOT NULL, INDEX, UNIQUE INDEX,
and DEFAULT <value>. Each of these are described as follows:

Users Guide OB-61

OpenBase SQL Language

Creating Tables

NOT NULL tells the server that the column must always have a value.
Trying to insert a row without specifying a value for this column will
result in an error. Likewise, updating that column and setting it to
NULL will also generate an error. The NOT NULL option provides a
safeguard so that critical data is not absent.

INDEX and UNIQUE INDEX indicate whether the column should be
indexed. If UNIQUE INDEX is used, the server will ensure that the
values of each row is unique. In this case, inserting an existing value
will cause an error.

DEFAULT <value> is used when you want the column to have a
default value when it is not specified in an insert statement. The
default value is used instead of NULL for unspecified columns.

CREATE VIEW

CREATE VIEW statements provide a way to specify database views. A
database view is a phantom table which includes data from one or
more tables. Views are normally used to provide a way of flattening
out complex relationships and queries so that the data appears like it is
coming from a single table.

In the SELECT... FROM section of this chapter we discussed table
aliasing. An alias is simply an abbreviation of the table that is defined
in the FROM portion of a select statement and used before each column
belonging to the aliased table. Aliasing tables is sometimes optional.
However, when defining views it is important to always use aliases.

CREATE VIEW is defined as follows:

CREATE VIEW <view name> (view-columl [, view-columnz2, ...]) AS
SELECT <column specification> FROM <table specification> [WHERE
<joins and constraints>] [ORDER BY <column>]

CREATE VIEW defines a lightweight table which is defined by the
select statement after the keyword AS.

The following CREATE VIEW statement, which uses the Movies
database, shows how to create a view that combines the data in two
tables.

OB-62 Users Guide

OpenBase SQL Language
Creating Tables

CREATE VI EW Tal ent Movie (fullnane, first, last, role) AS
SELECT t. FI RST_NAME +' ' +t.LAST_NAME, t.FI RST_NAME,

t. LAST_NAME, r.ROLE_NAME FROM MOVI E_ROLE r,

TALENT t WHERE t. TALENT_ID = r. TALENT_I D

TalentMovie is the name of the new view. The view name must be
different than those of previously defined tables and views.

(fullname, first, last, role) specifies the view columns. Each of these
maps to the columns specified in the select statement. The fullname
column is derived by concatenating the FIRST _NAME and
LAST_NAME columns in the TALENT table.

Views make it easy to flatten complex sets of information into a table-
like form. While you are not restricted as to how the tables underneath
the views may be updated and changed, with views you can only
update existing records. Update statements referring to a view must
only update columns that map to columns from a single table. In the
above example, for instance, you can not update FIRST_NAME and
ROLE_NAME in the same UPDATE statement.

Selecting information in a view is similar to selecting information in
any other table. Here is an example of how to select the information
from the view created above:

SELECT full nane, first, |last, rol e FROM Tal ent Movi e ORDER
BY | ast

This select statement will return all the talent names and their roles. It
is important to understand that the TalentMovie defines a window into
the TALENT and MOVIE_ROLE tables of the MOVIE database. All
modifications to data in these tables will be reflected when selecting
data from the view.

Users Guide OB-63

OpenBase SQL Language

Creating Indexes

Creating Indexes

CREATE [UNIQUE] INDEX

The CREATE INDEX and CREATE UNIQUE INDEX commands are
used to create indexes on columns. Indexes are necessary to provide
better performance when joining tables or searching information. The
syntax is defined as follows:

CREATE [UNIQUE] INDEX <table> <column>

Here are two examples using the MOVIE database:

CREATE | NDEX TALENT LAST_NAME

CREATE UNI QUE | NDEX MOVI E_ROLE ROLE_NAME

CREATE CLUSTERED [UNIQUE] INDEX

Adding the CLUSTERED keyword to your index definition arranges
the physical data in the table by the indexed column. This provides
significant performance benefits in cases where data is accessed
through a foreign key or is sorted by the specific column. By clustering
the column the database is able to find records likely to be accessed
together on consecutive pages.

Only one column per table can be used with clustering. Setting the
clustered column replaces any previous setting.

You can also set the clustered column using the OpenBase Manager
Schema Window. The popup entitled Natural Order allows you to set
the clustered index.

OB-64 Users Guide

OpenBase SQL Language
Dropping and Renaming Tables

Dropping and Renaming Tables

DROP TABLE

OpenBase supports dropping and renaming tables. The syntax for
dropping a table is as follows:

DROP TABLE t abl eNanme

This will remove the table tableName from the database. In other cases
you may want to rename a table. The following command will rename
tableName to newName:

RENAME t abl eNane newNane

We recommend that you use the OpenBase Manager schema editing
tools for dropping and renaming tables.

DROP VIEW

The syntax for dropping a view is as follows:

DROP VI EW Tal ent Movi e

This will remove the view TalentMovie from the database.

Changing Database Schemas

ALTER TABLE

There are two types of alter table commands. Some are fairly light
weight and do not require the database to rebuild it's pages on the disk.
Changing a column name, or column parameters are good examples
and are fairly easy for the database to do. Another type, however,
requires the database to do more work. Examples include, adding
columns, removing columns or changing the type of columns. The
good news is that you can include all of your changes in a single

Users Guide OB-65

OpenBase SQL Language
Changing Database Schemas

command statement to avoid making the database perform multiple
passes.

To change the name of a column you can perform ALTER TABLE
using the rename feature. The following command will rename the
column FIRST_NAME to FIRSTNAME.

ALTER TABLE TALENT RENAME FI RST_NAME TO FI RSTNAME

You can also change the parameters on a column, the following
examples show how you can assign default values for columns and
change some of the other column parameters.

Sometimes you may want to assign a default value for a previously
defined column. The following example demonstrates how this is
done. When the column value is not specified by subsequent inserts,
the column value will be set to the default value.

ALTER TABLE MOVI E COLUMN RATI NG SET DEFAULT ' PG

The following example shows how you can set the length of a character
string column. The length is enforced for future inserts and updates,
but altering the length will not truncate existing data.

ALTER TABLE MOVI E COLUWN TI TLE SET LENGTH 50

The following example shows how to make sure required column
values are always specified.

ALTER TABLE MOVI E COLUMN RATI NG SET NOT NULL

The following command reverses the SET NOT NULL shown above,
allowing the column to contain NULL values again.

ALTER TABLE MOVI E COLUMN RATI NG SET NULL

OB-66 Users Guide

OpenBase SQL Language
Changing Database Schemas

The following two commands show how to create and remove indexes
on a column. You can also use create index to do the same thing.

ALTER TABLE MOVI E COLUMN CATEGORY SET | NDEX

ALTER TABLE MOVI E COLUWMN RATI NG SET NO | NDEX

You can also create a unique index on columns.

ALTER TABLE MOVI E COLUMN MOVI E_I D SET UNI QUE | NDEX

Adding, removing and changing the type of columns are more time
consuming than the ALTER TABLE commands discussed above.

The reason is that they require the database to translate data between
the old and new data structure.

The following example adds two columns, removes two columns, and
changes the parameters for the name column. The ADD COLUMN
section should be a list of fields as they would appear in a create
statement. If columns listed in this section are already in the table, the
characteristics of the columns are replaced and the data is converted.

ALTER TABLE MOVI E ADD COLUMN COUNTRY CHAR(20) DEFAULT
“USA" . COUNTRY_I D I NT NOT NULL, DI RECTOR VARCHAR NOT NULL
I NDEX DEFAULT ‘ Unknown’ REMOVE COULMN RATI NG

When ADD COLUMN and/or REMOVE COLUMN are used, the table
must be rebuilt by the server. This may take awhile if you are
modifying a large table.

Finally, ALTER TABLE can be used to set buffer length defaults for
each table. This can be used to fine tune performance by decreasing
buffer sizes for tables that are used less frequently and increasing
buffer sizes for tables that are used more frequently. If you don't have a
need to change these numbers, we recommend that you leave them
alone.

Users Guide OB-67

OpenBase SQL Language
Changing User Access

Data buffers are counted in terms pages which may contain a
maximum of 128 records per 20K page (depending on the size of the
records). The number of memory based data pages are 100 by default.
By increasing this value you force the server to buffer more of the data
in memory and improve performance. The data page value can be set
as follows:

ALTER TABLE MOVI E SET DATA PAGES 200

Changing User Access

GRANT... ACCESS... TO

GRANT... ACCESS... TO provides a way to grant and revoke
permission for users to access tables. For your convenience, all users
have access to all tables before any permissions have been assigned.
When a specific user is assigned access to a table, all other users which
had access previously by default are assumed not to have access. If you
are not concerned about security, we recommend that you leave the
permissions alone.

The OpenBase Manager includes graphical tools that make it easy to
edit and maintain user permissions. However, for those applications
that require a knowledge of how permissions are granted and revoked,
we have included this section. Please note that GRANT... ACCESS...
TO is not part of the ANSI SQL standard. Here is an example:

GRANT joe, fred ACCESS +su-di TO MOVI ES, TALENT

GRANT... ACCESS... TO will assign the specified access to the users
and tables listed in the statement. The access portion is specified as a
string of characters as shown above. They are defined as follows:

S SELECT access gives the ability to select data from the
specified tables.
u UPDATE access gives the ability to update data in the

specified tables.
i INSERT access gives the ability to insert data into the

OB-68 Users Guide

OpenBase SQL Language
Changing User Access

specified tables.
d DELETE access gives the ability to delete data from the
specified tables.

The '+'and '-' which precede the letters tell whether to revoke access (-)
or grant access (+). If you wish to assign one type of access without
altering setting for other types of access, only include the access letters
which you wish to change.

GRANT staff, marketing ACCESS +sui-d TO MOVI ES

This example shows how you can grant and revoke access to groups of
people. In this case, the staff and marketing groups have been given
access to read and change data but not to delete.

The group permissions do not overwrite the permissions for
individuals. Users are allowed to perform inserts, updates, selects and
deletes on tables where either the user or the user's group has been
granted access.

This concludes our discussion on basic SQL and OpenBase specific
commands. In the next chapter we will talk about transaction
management.

Users Guide OB-69

OpenBase SQL Language
Changing User Access

OB-70 Users Guide

OpenBase SQL Language
Changing User Access

Users Guide OB-71

OpenBase SQL Language
Changing User Access

OB-72 Users Guide

Transaction
Management

In this chapter we will discuss the OpenBase SQL syntax for and
concepts behind, transactions.

This chapter contains the following sections:
« “Transaction Overview” on page 73.
« “Starting a Transaction” on page 74.
= “Committing Changes to the Database” on page 74.
= “Aborting a Transaction” on page 75.
« “l ocking Options” on page 75.
- “WRITE TABLE” on page 75.
e “FOR UPDATE” on page 76.
e “LOCKRECORD / UNLOCK RECORD” on page 76.

Transaction Overview

Transactions provide a mechanism for managing updates in multi-user
environments. This is especially important when client programs must
complete a series of update, inserts and deletes independently from
other users or risk leaving the database in an inconsistent state.

The START TRANSACTION command marks the beginning of a
transaction, and a COMMIT finalizes changes. Inserts, updates and
deletes performed between these commands may be undone if a
problem is detected by the application. This undo feature is accom-
plished by sending the database a ROLLBACK command in the place
of a COMMIT.

The server will automatically rollback a transaction if the server loses
communication with the client during a transaction (for example, if the
client crashes). This serves as a safeguard to ensure that the database is
never left in an inconsistent state.

OpenBase transactions are interactive with applications, allowing
applications to control the direction of the transaction based on return
codes. Changes to the database become visible to the client immedi-

Users Guide OB-73

Transaction Management
Starting a Transaction

ately. Transactions can not include any schema modifying SQL, such
as ALTER TABLE or CREATE TABLE statements. The reason is that
these operations can not be rolled back in OpenBase.

A couple of other OpenBase specific commands are discussed in this
chapter. They are, LOCK RECORD, UNLOCK RECORD, FOR
UPDATE and WRITE TABLE. These commands can be used for a
variety of purposes within transactions to ensure data integrity in a
multi-user environment.

The examples used in this chapter show transaction commands being
sent to the server using OpenlISQL. However, the same SQL will work
from your applications.

The OpenBase API includes functions for starting, rolling back and
committing transactions for your convenience. However, the same
thing can be accomplished by issuing the SQL described below.

Starting a Transaction

START TRANSACTION

Starting a new transaction is accomplished by sending the start trans-
action SQL to the database. You can do this from OpenlISQL by typing
the following:

openbase 1> START TRANSACTION
openbase 2> go

Now you can perform a series of inserts, updates and deletes. Each one
should be executed individually.

Committing Changes to the Database

COMMIT

When you are done making changes to the database, you need to
commit the transaction to make it final. The commit command can be
issued using OpenlISQL as follows:

openbase 1> COMMIT

OB-74 Users Guide

Transaction Management
Aborting a Transaction

openbase 2> go

COMMIT makes all changes final.

Aborting a Transaction

ROLLBACK

ROLLBACK provides a mechanism for aborting database changes
since the last BEGIN TRANSACTION. The ROLLBACK command
must be issued before committing the transaction. Here is an example
using OpenlSQL.

openbase 1> ROLLBACK
openbase 2> go

While this sums up the basic transaction mechanism, there are some
other features that you may want to take advantage of. They are
described in the following sections.

Locking Options
WRITE TABLE

The WRITE TABLE command obtains wants-to-write locks on tables
you wish to change. Other users are blocked from updating locked
tables until the locks are released by a COMMIT or ROLLBACK from
the lock owner. However, table locks do not block other users from
reading table information (unless they first try to obtain a lock).

WRITE TABLE waits for other users to release locks before obtaining
them and returning control to the client program.

WRITE TABLE solves a particular problem. You may want to select a
value from a row and then update the value within the same trans-
action. Specifying which table you plan to write to in the beginning can
also help prevent deadlocks. It will also ensure that the value you
select will not change before you have a chance to update the table.

Here is an example of how it is used.

Users Guide OB-75

Transaction Management

Locking Options

openbase 1> WRITE TABLE EMPLOYEE, DEPARTMENT

openbase 2> go

FOR UPDATE

FOR UPDATE can be used instead of WRITE TABLE if you want to
obtain locks on specific records instead of locking the whole table.

FOR UPDATE is used in conjunction with a select statement to mark
all rows in the result. The select statement returns no result if any of the
result rows have been marked by another user. Whether a record is
locked or not will have no effect on the user's ability to read the record,
unless of course, they try to obtain their own FOR UPDATE.

FOR UPDATE may appear after each table specification in the FROM
portion of select statements. Following is an example.

openbase 1> SELECT * FROM EMPLOYEE FOR UPDATE
openbase 2> go

This example will mark all the records in the EMPLOYEE table. By
constraining the search you can mark just the records you are inter-
ested in.

openbase 1> select * from EMPLOYEE t0 FOR UPDATE
openbase 2> where t0.FIRST_NAME ="Joe'
openbase 3> go

Locks are automatically released when COMMIT, ROLLBACK or
ROLLBACK LOCKS (which only releases the locks, not the trans-
action) are sent to the server.

LOCK RECORD / UNLOCK RECORD

LOCK RECORD is a simple way of marking a single row using its
_rowid value. The same thing can be accomplished using FOR
UPDATE(described above), but LOCK RECORD is faster and more
efficient. LOCK RECORD returns an error if the record is already
locked.

OB-76 Users Guide

Transaction Management
Locking Options

The OpenBase APl includes the markRow:ofTable: and
markRow:ofTable:alreadyMarkedByUser: for performing this task
from Objective-C. However, you can issue the SQL commands directly
and obtain the same effect. Here is an example.

The following example marks record 50500 in the EMPLOYEE table.
openbase 1> LOCK RECORD 50500 EMPLOYEE
openbase 2> go

The next example releases the mark on record 50500.
openbase 1> UNLOCK RECORD 50500 EMPLOYEE
openbase 2> go

Any marks you obtain during a transaction, whether by LOCK
RECORD or FOR UPDATE, will be removed when you execute the
COMMIT, ROLLBACK or ROLLBACK LOCKS commands.

Users Guide OB-77

Transaction Management
Locking Options

OB-78 Users Guide

6

Programming Interface

This chapter will present instructions on how to communicate with
OpenBase from your programs.

To use the Objective-C API to OpenBase, you need to include the
OpenBaseAPIl.framework in the frameworks section of the project
builder. This framework contains all the supporting methods
discussed in this chapter.

= “Connecting to a Database Server” on page 79.

= “Constructing SQL” on page 80.

= “SQL Statement Execution” on page 81.

e “Using Row IDs” on page 81.

e “Linking BLOBs To Your Records” on page 82.

= “Retrieving Records” on page 82.

e “SimpleTool Example” on page 84.

= “Discussion: SimpleTool _main.m” on page 85.

Connecting to a Database Server

The first thing that your application should do is initialize its
connection with the database server. We recommend that you do this
after your application has initialized. You may create as many
OpenBase objects as you want and connect to several different
databases at the same time.

The following code shows one way to connect to the OpenBase server.
For this example, we have stripped out some of the error handling to
make the necessities clear.

Users Guide OB-79

Programming Interface
Connecting to a Database Server

#i nport <QOpenBaseAPl / OpenBase. h>

- (OpenBase *)connect Dat abase

{
i nt returnCode;
OpenBase *dat abase;
dat abase = [[OpenBase alloc] init];
if (![database connect ToDat abase: " Movi es"
onHost: "*"
| ogi n: "adm n"
password:"" return: & eturnCode) {
printf("failed with error code %\ n",
r et ur nCode) ;
exit(0);
}
return dat abase;
}

In the above example, the call to: connectToDatabase: onHost: login:
password: return: shows how to connect to the OpenBase server. Since
the above code sample specifies a “*” instead of a target host, the
interface will search all hosts on your network for the Movies database.
Specifying a host will minimize the time it takes to connect with the
database, but will not affect overall performance.

Constructing SQL

Once you have initialized a connection with OpenBase, you are ready
to interact with it using SQL. Constructing an SQL statement can be
done all at once or in little pieces using the makeCommand: method.
Here is an example where the entire SQL statement is defined with a
single makeCommand: call.

[database makeCommand: “select TITLE from MOVIE where
REVENUE > 300000";

While this is correct, you may find it more convenient to specify the
statement in smaller pieces.

OB-80 Users Guide

Programming Interface
Connecting to a Database Server

[database makeCommand: “select TITLE “J;
[database makeCommand: “from MOVIE “];
[database makeCommand: “where REVENUE > 300000"];

When constructing queries in pieces, one common mistake is forgetting
the spaces at the beginning or end of each segment. For instance, if you
send the strings “select TITLE” and “from MOVIE”, the result is “select
TITLEfrom MOVIE”. As you can see, there is a space missing that will
cause an error. Therefore, be very careful to include the appropriate
spaces when constructing SQL statements.

SQL Statement Execution

Once you are done constructing an SQL statement, you can send it to
the database by calling the executeCommand method. Here is an
example of how the executeCommand method is invoked:

[database executeCommand];

When you execute a statement, the content of the command buffer is
sent to the OpenBase server. The executeCommand method returns
TRUE if the query is executed, otherwise FALSE is returned.

Using Row IDs

While it is not necessary, we recommend that application designers use
the _rowid column to identify records. _rowid holds automatically
generated unique values for identifying records in each table.

If you don't specify _rowid’s in your insert statements, they will be
automatically generated for you by the server. However, if you want to
insert a record that you want an immediate handle on, you need to ask
the database for the next available _rowid for use with your insert
statement. In this section, we show what must be done to generate and
use unique _rowid’s.

Before you insert a record into the database, you should get a new
unique identification number from the OpenBase object. This new
unique number (returned as a string) should be used when inserting

Users Guide OB-81

Programming Interface
Linking BLOBs To Your Records

the record into the database. The following code segment gets a new
record identifier for the contact table.

char uniqueKey[20];
strcpy(uniqueKey, [database uniqueRowldForTable: “MOVIE™]);

Once you have this unique identification value, you can use it to
construct an SQL statement for inserting a record into the database.
Here is an example of how this is done:

[dat abase nmakeCommand: “insert into MOV E (_row d, TITLE,
REVENUE) val ues “];

sprintf(buff, “("9%',"'9%',%"') “, uniquekey, novieTitle,
revenue) ;

[dat abase makeConmand: buf f];

[dat abase execut eConmand] ;

The above code segment demonstrates how to insert a set of values
into a database table.

Linking BLOBs To Your Records

Linking BLOBs (Binary Large OBjects) to database records is easily
accomplished through the OpenBase APl and SQL language.

All you need to do is specify a column of type object in your database
schema to hold a BLOB key. A BLOB key is simply an 8-character
string that uniquely identifies the BLOB in the database. By saving the
key along with other information, you are able to associate the infor-
mation with BLOBs of text or image data. All you need to retrieve a
BLOB is the key that is stored in the associated record.

Retrieving Records

You can use a select statement to retrieve previously saved infor-
mation. Here is a sample select statement that retrieves all PG rated
Movies and sorts them by title:

OB-82 Users Guide

Programming Interface
Retrieving Records

SELECT _rowid, TITLE FROM MOVIE WHERE RATING ='PG'
ORDERBY TITLE

This query can be sent to the database by the following Obijective-C
commands:

[database makeCommand:”SELECT _rowid, TITLE FROM MOVIE
WHERE RATING ='PG' ORDER BY TITLE"];
[database executeCommand];

When we get each row of the result, the column values are dumped
into variables specified by the programmer. The following code
segments demonstrate how to retrieve the results from the SQL request
made above. After executing a query, you should call rowsAffected to
see if any results have been returned.

if ([database rowsAffected]== 0) return NO_RESULT;

Ifthereisaresult,youshouldbindyourprogramvariablestothecolumns
of the result. Since there are two columns, we will call the bindString:
method twice. This tells the OpenBase interface where to put the infor-
mationasitretrieveseachrowoftheresult.

[database bindString: uniqueKey];
[database bindString: movieTitle];

In this case, the target variables are both character strings. If one of the
columns in your result is of another type, bindString: will make sure
that the values are converted to a string. You may also want to use the
bindInt:, bindDouble:, bindLong: and bindLongLong: methods for
other target values. The interface will always try to convert column
data to the target variable's type. Variables must be bound in order,
starting with the first and ending with the last column.

Nowthatthecolumnshavebeenboundtotheprogramvariables,youwill
need to retrieve the rows. This is done using the nextRow method, which
should be called once for each row in the result. Each time it is called, the

Users Guide OB-83

Programming
Retrieving Records

Interface

program variables bound to the columns will be filled with the column
data for the next available row. When nextRow returns FALSE, it means
therearenomorerowstoberetrieved.Hereisanexample:

while ([database nextRow]) {
/7 do something with uniqueKey and movieTitle
printf(*%s,%s”, uniqueKey, movieTitle);

SimpleTool Example

Previously in this chapter we showed some examples using Objective-
C. In this section we will discuss a program written using the C API.
All Objective-C calls have equivalent C calls which perform the same
functions. The Objective-C version of this program is available in the
examples directory.

SimpleTool demonstrates interaction with a relational database,
without using the tedious programming overhead, common with
databases.

Using C or Objective-C is the simplest way to access OpenBase.
SimpleTool will retrieve from the database the movies and the revenue
from the producing studios. The listing below illustrates the OpenBase
API framework. A discussion follows.

#import <Foundation/Foundation.h>
#import <OpenBaseAPI/OpenBase.h>

int main (int argc, const char *argv*);

{
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
int returnCode;
OpenBase *connection = ob_newConnection“];

//variables to hold values
char movieTitle[256];

char studioName[256];
long revenue;

OB-84 Users Guide

Programming Interface
Retrieving Records

if (lob_connectToDatabase(connection,“Movie”,

o v &returnCode)) {
printf(“%s\n”, ob_connectErrorMessage(connection));
return -1,

}

ob_makeCommand(connection,
”select t0.TITLE, t0.REVENUE, t1.NAME from MOVIE t0, STUDIO t1
where t0.STUDIO_ID =t1.STUDIO_ID order by t0.REVENUE DESC”);

if (lob_executeCommand(connection)) {
printf(“ERROR%s\n”,0b_serverMessage(connection));
ob_invalidate(connection);
return -1;

}

ob_bindString(connection, movieTitle);
ob_bindLong(connection, &revenue);
ob_bindString(connection, studioName);

while (ob_nextRow(connection)) {
printf(“%s made $%Id for %s.\n”,movieTitle,
revenue, studioName);

}

ob_invalidate(connection);
[pool release];
return O;

Discussion: SimpleTool_main.m

Main begins by establishing a connection to the database, if a
connection was not made, print the offending message returned from
the connection object and exit. Using the ob_connectToDatabase()
function, establish a connection to the database with the database
name, hostname, logon id, and password.

Users Guide OB-85

Programming Interface
Retrieving Records

int returnCode;
OpenBase *connection = ob_newConnection();
if (lob_connectToDatabase(connection, “Movie”, “*7, ““ "

&returnCode)) {
printf(*%s\n”, ob_connectErrorMessage(connection));
return -1;

}

After a successful connection has been established, the
ob_makeCommand() function is used to send SQL statements. The
TITLE and REVENUE data columns from the MOVIE table as well as
the associated studio NAME from the STUDIO table are retrieved. The
SQL statements are now buffered for later execution by the database
server.

ob_makeCommand(connection,”select t0.TITLE, t0.REVENUE,
t1.NAME from MOVIE t0, STUDIO t1 where t0.STUDIO_ID =
t1.STUDIO_ID order by t0.REVENUE DESC”);

The ob_executeCommand() passes the buffered SQL statements to the
database server and returns TRUE for successful and FALSE for failed
execution.

if (lob_executeCommand(connection)) {
printf(“ERROR - %s\n”,0b_serverMessage(connection));
ob_invalidate(connection);
return -1;

The ob_bindString() and ob_bindLong() functions, bind the resulting
data columns from the database, to the receiving program variables.
SimpleTool binds the variables movieTitle, revenue and studioName
respective to the order of the initial SELECT statement.

ob_bindString(connection, movieTitle);
ob_bindLong(connection, &revenue);
ob_bhindString(connection, studioName);

OB-86 Users Guide

Programming Interface
Retrieving Records

ob_nextRow() increments through the result rows and retrieves the
data. FALSE is returned when all data is processed.

while (ob_nextRow(connection)) {
printf(“%s made $%ld for %s.\n”,movieTitle, revenue,studioName);

}

Main ends with a call to terminate the connection to the database
server.

ob_invalidate(connection);

Users Guide OB-87

Programming Interface
Retrieving Records

OB-88 Users Guide

Application
Notification

Overview

This chapter will help you understand how to take advantage
of notification in your applications, including the following:

= “Qverview” on page 89.
= “Registering for Notification” on page 89.

Application Notification means that your applications can be
notified when the database changes. This allows you to build
data views or other information displays that will always stay
up-to-date with the information in the database.

Registering for Notification

Before you can receive notifications, you will need to prepare
an object to respond to the appropriate delegate method.

To start notification for object self, do the following:

[OpenBaseCbj startNotificationFor:self];

To remove self from the notification list, do the following:

[OpenBaseChj renoveNotificationFor:self];

Users Guide OB-89

Application Notification
Registering for Notification

Executing these commands will register your object to receive
notification of database changes. Finally, you will need to
implement the notifyChange:database:intable:vid:field:value:
delegate method. This method is defined as follows:

notifyChange:database:intable:vid:field:value:

- noti fyChange: (const char *)action
dat abase: (const char *)dat abaseNane
i ntabl e: (const char *)tabl eNanme
vid: (const char *)row d
field: (const char *)fiel dName
val ue: (const char *)aVal ue

This delegate method is called to notify your application
when a change is made to the database. The field and value
parameters will always be an empty string, but they will be
used in a future version of OpenBase. All objects that set
themselves up as the delegate of the notifier object will be
notified of database changes.

The action parameter is one of the following values: (lock),
(unlock), (update), (insert) or (delete). (lock) and (unlock)
indicate when a record has been marked or unmarked by
another user.

When your object is notified of a change, you can select the
new values from the database. Since others will be asking for
the same piece of information, OpenBase buffers the infor-
mation for faster access.

OB-90 Users Guide

OpenBase API

This chapter will define the methods in the OpenBase-SQL Objective-C
library.

= “Overview” on page 91.

* “OpenBase-SQL Objective-C methods” on page 91.

e “BLOB/Object Handling Methods:” on page 129.

Overview

To use the OpenBase-SQL Objective-C library, you will need to include
the OpenBaseAPl.framework in the frameworks section of your
project. The OpenBase header file may be included in your program
source by importing <OpenBaseAPI/OpenBase.h>.

OpenBase-SQL Objective-C methods
The following methods will be illustrated:

“beginTransaction:” on page 93.

“bindDouble:” on page 94.

“bindInt:” on page 95.

“bindLong:” on page 96.

“bindLongLong:” on page 97.

“bindString:” on page 98.

“bufferHasCommands” on page 100.

“clearCommands” on page 101.

“commandBuffer” on page 102.

“commitTransaction” on page 103.

“connectErrorMessage:” on page 104.

“connectToDatabase:onHost:login:password:return:” on page 105.

“databaseName” on page 107.

Users Guide 0OB-91

OpenBase API
OpenBase-SQL Objective-C methods

“executeCommand” on page 108.

“hostName” on page 109.

“isColumnNULL:” on page 110.

“loginName” on page 111.

“makeCommand:” on page 112.

“markRow:ofTable:alreadyMarkedByUser:” on page 113.

“nextRow” on page 114.

“password” on page 115.

“removeMarkOnRow:ofTable:” on page 116.

“removeNotificationFor:” on page 117.

“resultColumnCount” on page 118.

“resultColumnName:” on page 119.

“resultColumnType” on page 120.

“resultReturned” on page 122.

“resultTableName:” on page 123.

“rollbackTransaction” on page 124.

“rowsAffected” on page 125.

“serverMessage” on page 126.

“startNotificationFor:” on page 127.

“uniqgueRowldForTable:” on page 128.

OB-92 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

beginTransaction:
Defined in <OpenBaseAPl/OpenBase.h>
- (BOOL)beginTransaction

Returns TRUE if the transaction started correctly. If an error is
detected, FALSE is returned.

Objective-C Example:
OpenBase *connecti on;

if ([connection beginTransaction])
return SUCCEED,

ANSI C Example:
OpenBase *connecti on;

i f (ob_begi nTransacti on(connecti on))
return SUCCEED;

See Also: “commitTransaction” on page 103., “rollbackTransaction” on
page 124.

Users Guide OB-93

OpenBase API
OpenBase-SQL Objective-C methods

bindDouble:

Defined in <OpenBaseAPl/OpenBase.h>

- bindDouble:(double *)var

- bindDouble:(double *)var column:(int)col;

bindDouble: binds the double variable var to the next result column.
Each time a call to bindString:, bindint:, bindDouble:, bindLong:, or
bindLongLong: is made, the column pointer is incremented to the next
column. You should make as many calls as needed to bind your
program variables to all the columns in your query result.

bindDouble:column: binds the double variable var to the specific
column col. col is an integer which counts from column 0.

These methods should be used after a query has been executed and
results have been returned. Column values will automatically be
converted to the target variable's type.

Objective-C Example:
OpenBase *connecti on;
doubl e doubl eVal ue;

[connecti on bi ndDoubl e: &oubl eVal ue] ;

ANSI C Example:
OpenBase *connecti on;
doubl e doubl eVal ue;

ob_bi ndDoubl e(connecti on, &doubl eVal ue);

OB-94 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

bindint:

Defined in <OpenBaseAPl/OpenBase.h>

- bindInt:(int *)var

- bindInt:(int *)var column:(int)col;

bindInt: binds the integer variable var to the next result column. Each
time a call to bindString:, bindiInt:;, bindDouble:, bindLong:, or
bindLongLong: is made, the column pointer is incremented to the next

column. You should make as many calls as needed to bind your
program variables to all the columns in your query result.

bindInt:column: binds the character string variable var to the specific
column col. col is an integer which counts from column 0.

These methods should be used after a query has been executed and
results have been returned. Column values will automatically be
converted to the target variable's type.

Objective-C Example:
OpenBase *connecti on;
int intVal ue;

[openbase bi ndlnt: & nt Val ue];

ANSI C Example:
OpenBase *connecti on;
i nt intVal ue;

ob_bi ndl nt (connection, & ntVal ue);

Users Guide OB-95

OpenBase API
OpenBase-SQL Objective-C methods

bindLong:

Defined in <OpenBaseAPl/OpenBase.h>

- bindLong:(long *)var;

- bindLong:(long *)var column:(int)col;

bindLong: binds the long integer variable var to the next result column.
Each time a call to bindString:, bindint:, bindDouble:, bindLong:, or
bindLongLong: is made, the column pointer is incremented to the next

column. You should make as many calls as needed to bind your
program variables to all the columns in your query result.

bindLong:column: binds the long integer variable var to the specific
column col. col is an integer which counts from column 0.

These methods should be used after a query has been executed and
results have been returned. Column values will automatically be
converted to the target variable's type.

Objective-C Example:
OpenBase *connecti on;
| ong | ongVal ue;

[connecti on bi ndLong: & ongVal ue] ;

ANSI C Example:
OpenBase *connecti on;
| ong | ongVal ue;

ob_bi ndLong(connection, & ongVal ue);

OB-96 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

bindLongLong:

Defined in <OpenBaseAPl/OpenBase.h>

- bindLongLong:(long long *)var;

- bindLongLong:(long long *)var column:(int)col;

bindLongLong: binds the long long integer (64 bit) variable var to the
next result column. Each time a call to bindString:;, bindint:,
bindDouble:, bindLong:, or bindLongLong: is made, the column
pointer is incremented to the next column. You should make as many
calls as needed to bind your program variables to all the columns in
your query result.

bindLongLong:column: binds the long long integer variable var to the
specific column col. col is an integer which counts from column 0.

These methods should be used after a query has been executed and
results have been returned. Column values will automatically be
converted to the target variable's type.

Objective-C Example:
OpenBase *connecti on;
I ong | ong | ongl ongVal ue;

[connecti on bi ndLonglLong: & ongl ongVal ue] ;

ANSI C Example:
OpenBase *connecti on;
I ong | ong | ongl ongVal ue;

ob_bi ndLongLong(connecti on, & ongl ongVal ue);

Users Guide OB-97

OpenBase API
OpenBase-SQL Objective-C methods

bindString:

Defined in <OpenBaseAPl/OpenBase.h>

- bindString:(const char *)var

- bindString:(const char *)var column:(int)col;

bindString: binds the character string variable var to the next result
column. Each time a call to bindString:, bindint:;, bindDouble:,
bindLong:, or bindLongLong: is made, the column pointer is incre-
mented to the next column. You should make as many calls as needed
to bind your program variables to all the columns in your query result.

bindString:column: binds the character string variable var to the
specific column col. col is an integer which counts from column 0.

These methods should be used after a query has been executed and
results have been returned. Column values will automatically be
converted to the target variable's type.

Objective-C Example:
OpenBase *connecti on;
char firstnane[256], |astnane[256];

[connection nmakeComrand: "sel ect FI RST_NAME,
LAST _NAMVE

from EMPLOYEE order by LAST_NAME'];

if (![connection executeConmand]) return;

if (![connection resultReturned]) return;

[connection bindString:firstnane];
[connection bindString:!|astnane];

whil e ([connection next Row) {
printf("%, %\n",|astnane,firstnanme);

}

ANSI C Example:
OpenBase *connecti on;
char firstnane[256], |astnane[256];

OB-98 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

ob_makeConmand(connection, "sel ect FlIRST_NAME
LAST_NAME

from EMPLOYEE order by LAST_NAME");

i f ('ob_executeComuand(connection)) return;

if ('ob_resultReturned(connection)) return;

ob_bindString(connection, firstnane);
ob_bi ndString(connection, |astnane);

whi | e (ob_next Row(connection)) {
printf("%, 9%\n",|astnane,firstnane);

}

Users Guide OB-99

OpenBase API
OpenBase-SQL Objective-C methods

bufferHasCommands
Defined in <OpenBaseAPl/OpenBase.h>
- (BOOL)bufferHasCommands

Returns TRUE if unexecuted commands are in the command buffer,
FALSE otherwise.

Objective-C Example:
OpenBase *connecti on;

if ([connection bufferHasCommands])
return SUCCEED;

ANSI C Example:
OpenBase *connecti on;

i f (ob_bufferHasComrands(connecti on))
return SUCCEED;

OB-100 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

clearCommands
Defined in <OpenBaseAPl/OpenBase.h>
- clearCommands;

Clears the command buffer. This method removes any unexecuted
commands from the command buffer.

Objective-C Example:
OpenBase *connecti on;

[connection cl ear Commands] ;

ANSI C Example:
OpenBase *connecti on;

ob_cl ear Commands(connecti on);

Users Guide OB-101

OpenBase API
OpenBase-SQL Objective-C methods

commandBuffer
Defined in <OpenBaseAPl/OpenBase.h>
- (const char *)commandBuffer;

This method is used to look at SQL commands in the command buffer.
The buffer will return the most current SQL command.

Returns the contents of the command buffer.

Objective-C Example:
OpenBase *connecti on;

prinf("%\n", [connection comandBuffer]);

ANSI C Example:
OpenBase *connecti on;

printf("%\n",ob_commandBuf f er (connection));

OB-102 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

commitTransaction
Defined in <OpenBaseAPl/OpenBase.h>
- (BOOL)commitTransaction;

Returns TRUE if the transaction committed to the database. If an error
is detected, FALSE is returned.

Objective-C Example:
OpenBase *connecti on;

if ([connection commitTransaction]) return
SUCCEED;

ANSI C Example:
OpenBase *connecti on;

i f (ob_commitTransaction(connection))
return SUCCEED;

Users Guide OB-103

OpenBase API
OpenBase-SQL Objective-C methods

connectErrorMessage:
Defined in <OpenBaseAPl/OpenBase.h>
- (const char *)connectErrorMessage:(int)errorCode

Returns an error message corresponding to the error code errorCode
set by connectToDatabase:onHost:login:password:return:.

Objective-C Example:
OpenBase *connecti on;
int errorNum

prinf("%\n", [connection
connect Error Message: error Nunj) ;

ANSI C Example:
OpenBase *connecti on;

printf("%\n",ob_connect Error Message(connecti on,
errorNum);

OB-104 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

connectToDatabase:onHost:login:password:return:
Defined in <OpenBaseAPl/OpenBase.h>

- (BOOL)connectToDatabase:(const char *)dbName
onHost:(const char *)hostName
login:(const char *)loginName
password:(const char*)password return:(int*)returnCode;

This method initializes a program's connection to a OpenBase
database. Upon success, this method returns TRUE. Otherwise it
returns FALSE.

The parameters are described as follows:

= dbName is the name of the database that you would like to
connect to.

= hostName is the host name of the computer where the data-
base resides. A “]; may be substituted to search the network
for the designed database. An empty string specifies that the
database is on the local computer.

= loginName is the name that the user uses to log into the data-
base. In order for the initialization to be successful, this login
name must correspond to an entry in the user table.

= password is the password corresponding to the login name.
= returnCode is one of the following values:

ERR_SFTUSRLIM means that the software license limit has been
reached.

ERR_DBSUSRLIM means that the OpenBase licensed user limit
has been reached.

ERR_NOSERVER means that the server is not running.
ERR_INCORRECT_LOGIN means that the user login and

password were not correct.

This method performs the initialization necessary to work with the
database. You can not use the OpenBase object before it has been
initialized using this method.

- (BOQL) connect ToDat abase: (const char *)dbName
onHost : (const char *)host Nane
| ogi n: (const char *)I| ogi nName

Users Guide OB-105

OpenBase API
OpenBase-SQL Objective-C methods

passwor d: (const char *)password
return: (int *)returnCode;

Objective-C Example:
OpenBase *connecti on;
char dbase[50];
char host[50];
char | ogi n[50];
char passwd[50] ;
int errorNum

if ([connection connect ToDat abase: dbase
onHost : host
| ogi n: login
passwor d: passwd
return: &rrorNum) {
return SUCCEED;
} else {
printf("%\n", [connection
connect Error Message: errorNunj) ;

}

ANSI C Example:
OpenBase *connecti on;
char dbase[50];
char host[50];
char | ogin[50];
char passwd[50] ;
int error Num

i f (ob_connect ToDat abase(connecti on, dbase,
host, | ogi n, passwd, &errorNum)) {

ret urn SUCCEED;
} else {

printf("%\n",

ob_connect Err or Message(connecti on, error Nun)) ;

OB-106 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

databaseName
Defined in <OpenBaseAPl/OpenBase.h>
- (const char *)databaseName;

Returns the name of the database.

Objective-C Example:
OpenBase *connecti on;

prinf("%\n", [connection databaseNane]);

ANSI C Example:
OpenBase *connecti on;

printf("%\n", ob_dat abaseNane(connection));

Users Guide OB-107

OpenBase API
OpenBase-SQL Objective-C methods

executeCommand

Defined in <OpenBaseAPl/OpenBase.h>

- (BOOL)executeCommand;

Executes the SQL commands in the command buffer.

Returns TRUE if the SQL was executed. If an error is detected FALSE is
returned and the server message is set with the error message (see
serverMessage).

Objective-C Example:
OpenBase *connecti on;

if ([connection executeConmrand]) return SUCCEED,

ANSI C Example:
OpenBase *connecti on;

i f (ob_execut eConmand(connection) return SUCCEED;

OB-108 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

hostName
Defined in <OpenBaseAPl/OpenBase.h>
- (const char *)hostName

Returns the name of the host where the OpenBase server is running.

Objective-C Example:
OpenBase *connecti on;

prinf("%\n", [connection hostNane]);

ANSI C Example:
OpenBase *connecti on;

printf("%\n", ob_host Nane(connection));

Users Guide OB-109

OpenBase API
OpenBase-SQL Objective-C methods

iIsColumnNULL:
Defined in <OpenBaseAPl/OpenBase.h>

- (BOOL)isColumnNULL:(int)col;

Checks to see if a returned column has a NULL value. col specifies the
column position where position 0 is the first column. This method
must be used in conjunction with nextRow.

Returns TRUE if the column specified by col is NULL. Otherwise
FALSE is returned.

Objective-C Example:
OpenBase *connecti on;
int col Num

if ([connection isColummNULL: col Nuni)
return SUCCEED,

ANSI C Example:
OpenBase *connecti on;
int col Num

i f (ob_isCol umNULL(connection, col Nunj)
r et ur n SUCCEED;

OB-110 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

loginName
Defined in <OpenBaseAPl/OpenBase.h>
- (const char *)loginName

Returns the current database login.

Objective-C Example:
OpenBase *connecti on;

prinf("%\n", [connection |oginName]);

ANSI C Example:
OpenBase *connecti on;

printf("%\n",ob_| ogi nNane(connection));

Users Guide OB-111

OpenBase API

OpenBase-SQL Objective-C methods

makeCommand:
Defined in <OpenBaseAPl/OpenBase.h>
- makeCommand:(char *)cmd;

This method allows you to build an SQL statement. Each time you call
this method, the content of cmd is appended to the end of an SQL
buffer. When the SQL query is completely constructed, the execute-
Command method will send the query to the database.

Objective-C Example:
OpenBase *connecti on;

[connecti on makeCommand: "i nsert into EMPLOYEE "];
[connecti on makeCommand: " (FI RST_NAME) val ues "];
[connecti on makeCommand: " (" John Smith')"];

if ([connection executeComrand]) return SUCCEED,

ANSI C Example:
OpenBase *connecti on;

ob_makeConmand(connection, "i nsert into EMPLOYEE ");
ob_makeConmand(connection, "(FI RST_NAME) val ues ");
ob_makeCommand(connection, "(John Smith')");

i f (ob_execut eConmand(connection))
return SUCCEED;

OB-112 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

markRow:ofTable:alreadyMarkedByUser:
Defined in <OpenBaseAPl/OpenBase.h>

- (int)markRow:(const char *)anld ofTable:(const char *)tableName
alreadyMarkedByUser:(char *)userName;

These methods attempt to mark a row in table tableName where
_rowid equals anld. These methods are useful for managing a pessi-
mistic locking strategy.

Marking records before being edited will enable your programs to
coordinate database changes between multiple users. If a record has
been marked by another user, we recommend that the record be
displayed in read-only mode. Marks are only flags to other programs.
They do not block SQL from updating the records in question.

Marks are automatically released if the database is restarted or if the
communication link goes down between the server and client.

Returns TRUE if the database row is marked successfully. These
methods return FALSE if the record was already marked by another
user. userName is set to the user who owns the mark if the attempt
fails.

Objective-C Example:
OpenBase *connecti on;
char row d[30];
char tabl e[50];

if ([connection markRow. row d of Tabl e: tabl e])
return SUCCEED;

ANSI C Example:
OpenBase *connecti on;

i f (ob_mar kRow(connection, rowid, table))
return SUCCEED,

Users Guide OB-113

OpenBase API
OpenBase-SQL Objective-C methods

nextRow
Defined in <OpenBaseAPl/OpenBase.h>
- (BOOL)nextRow;

This method retrieves the next row in a search result. Each time a
database row (or record) is processed using nextRow, column values
are placed in Objective-C variables previously bound to each column.

If nextRow successfully processes a result row it returns TRUE. If there
are no more result rows to process it returns FALSE.

Objective-C Example:
OpenBase *connecti on;

if ([connection nextRow]) return SUCCEED,

ANSI C Example:
OpenBase *connecti on;

i f (ob_next Rowm connection)) return SUCCEED,

OB-114 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

password
Defined in <OpenBaseAPl/OpenBase.h>
- (const char *)password

Returns the password used to login to the database.

Objective-C Example:
OpenBase *connecti on;

prinf("%\n", [connection password]);

ANSI C Example:
OpenBase *connecti on;

printf("%\n", ob_password(connection));

Users Guide OB-115

OpenBase API
OpenBase-SQL Objective-C methods

removeMarkOnRow:ofTable:
Defined in <OpenBaseAPl/OpenBase.h>

- (int)removeMarkOnRow:(const char *)anld ofTable:(const char
*)tableName;

removeMarkOnRow:ofTable: releases a previously marked record,
where anld maps to the record's _rowid column in the table
tableName.

Returns TRUE if it succeeds. Otherwise FALSE is returned.

Objective-C Example:
OpenBase *connecti on;
char row d[30];
char tabl e[50];

if ([connection renoveMar kOnRow: r ow d
of Tabl e: tabl e]) return SUCCEED;

ANSI C Example:
OpenBase *connecti on;

i f (ob_renmveMar kOnRow connection, row d, table))
r et ur n SUCCEED;

OB-116 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

removeNotificationFor:
Defined in <OpenBaseAPl/OpenBase.h>
- removeNotificationFor:notificationDelegate;

Removes the naotificationDelegate from the notification list.

Objective-C Example:
OpenBase *connecti on;
id notify;

[connection renoveNotificationFor: notify];

Users Guide OB-117

OpenBase API
OpenBase-SQL Objective-C methods

resultColumnCount

Defined in <OpenBaseAPl/OpenBase.h>

- (int)resultColumnCount;

This method may be used to get the number of columns in a result.

Returns the number of columns returned by a query result.

Objective-C Example:
OpenBase *connecti on;

prinf("%\n", [connection resultColumCount]);

ANSI C Example:
OpenBase *connecti on;

printf("%\n",ob_resultCol umCount (connection));

OB-118 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

resultColumnName:
Defined in <OpenBaseAPl/OpenBase.h>
-(const char *)resultColumnName:(int)col;

This method is used to get the column name of the result column
specified by col. col specifies the column position where position 0 is
the first column. This method should only be called after executing a

query.

Returns the column name of the column specified by col.

Objective-C Example:
OpenBase *connecti on;
int col Num

prinf("%\n", [connection
resul t Col umNan®e; col Nunj) ;

ANSI C Example:
OpenBase *connecti on;
int col Num

printf("%\n", ob_resultCol umNane(connecti on,
col Num);

Users Guide OB-119

OpenBase API
OpenBase-SQL Objective-C methods

resultColumnType
Defined in <OpenBaseAPl/OpenBase.h>
- (int)resultColumnType:(int)col;

This method may be used after results have been detected to get the
natural type of the result columns. col specifies the column position
where position 0 is the first column.

The types are defined as follows:

OBTYPE_CHAR Character String
OBTYPE_INT Integer
OBTYPE_DOUBLE Double
OBTYPE_LONG Long
OBTYPE_LONGLONG Long Long
OBTYPE_MONEY Money
OBTYPE_DATE Date
OBTYPE_TIME Time
OBTYPE_DATETIME Date-time
OBTYPE_OBJECT Object 7 BLOB

OB-120 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

Returns the natural type of the column col.

Objective-C Example:
OpenBase *connecti on;
int col Num

i f([connection result Col umType: col Nun] ==
OBTYPE_MONEY)

ANSI C Example:
OpenBase *connecti on;
int col Num

i f(ob_resultCol umType(connection, col Num ==

Users Guide OB-121

OpenBase API
OpenBase-SQL Objective-C methods

resultReturned

Defined in <OpenBaseAPl/OpenBase.h>

- (BOOL)resultReturned;

Checks to see if results need to be processed by nextRow.

Returns TRUE if there are results that need processed. Otherwise
FALSE is returned.

Objective-C Example:
OpenBase *connecti on;

if ([connection resultReturned]) return SUCCEED,

ANSI C Example:
OpenBase *connecti on;

i f (ob_resultReturned(connection))
return SUCCEED,

OB-122 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

resultTableName:
Defined in <OpenBaseAPl/OpenBase.h>
- (const char *)resultTableName:(int)col;

This method is used to get the table name of the result column
specified by col. col specifies the column position where position 0 is
the first column. This method should only be called after executing a

query.

Returns the table name of the column specified by col.

Objective-C Example:
OpenBase *connecti on;
int col Num

printf("%\n",[connection
resul t Tabl eNane: col Nuni) ;

ANSI C Example:
OpenBase *connecti on;
int col Num

printf("%\n",ob_resultTabl eNane(connecti on,
col Num);

Users Guide OB-123

OpenBase API
OpenBase-SQL Objective-C methods

rollbackTransaction
Defined in <OpenBaseAPl/OpenBase.h>
- (BOOL)rollbackTransaction;

Returns TRUE if the transaction is rolled back. If an error is detected
FALSE is returned.

Objective-C Example:
OpenBase *connecti on;

if ([connection roll backTransaction])
return SUCCEED;

ANSI C Example:
OpenBase *connecti on;

if (ob_rollbackTransaction(connection))
return SUCCEED;

OB-124 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

rowsAffected
Defined in <OpenBaseAPl/OpenBase.h>
- (int)rowsAffected,;

This method is called after executing an SQL command using execute-
Command.

Returns the number of database rows affected by the most recent SQL
command.

Objective-C Example:
OpenBase *connecti on;

prinf("Found % itens\n", [connection
rowsAf fected]);

ANSI C Example:
OpenBase *connecti on;

printf("Found % items\n",
ob_r owsAf f ect ed(connection));

Users Guide OB-125

OpenBase API
OpenBase-SQL Objective-C methods

serverMessage
Defined in <OpenBaseAPl/OpenBase.h>
- (const char *)serverMessage;

Returns a message from the server pertaining to the last query
executed.

Objective-C Example:
OpenBase *connecti on;

prinf("%\n", [connection serverMessage]);

ANSI C Example:
OpenBase *connecti on;

printf("%\n",ob_server Message(connection));

OB-126 Users Guide

OpenBase API
OpenBase-SQL Objective-C methods

startNotificationFor:
Defined in <OpenBaseAPl/OpenBase.h>
- startNotificationFor:notificationDelegate;

startNotificationFor: starts a notification session for
notificationDelegate. notificationDelegate must implement
notifyChange:database:intable:vid:field:value:.
- notifyChange: (const char *)action

dat abase: (const char *)dat abaseNane

i ntabl e: (const char *)tabl eName

vi d: (const char *)row d

field: (const char *)fiel dName

val ue: (const char *)aVal ue

This delegate method is called to notify your application when a
change is made to the database. The field and value parameters will
always be an empty string, but they will be used in a future version of
OpenBase. All objects that set themselves up as the delegate of the
notifier object will be notified of database changes.

Please see the chapter on notification for more information about this
method.

Objective-C Example:
OpenBase *connecti on;
id notificationDel egate;

[connecti on
startNotificationFor:notificationDel egate];

Users Guide OB-127

OpenBase API
OpenBase-SQL Objective-C methods

unigueRowlIdForTable:
Defined in <OpenBaseAPl/OpenBase.h>
- (const char *)uniqueRowldForTable:(const char *)tablename

Returns a unique _rowid value for the specified table tablename. This
value must be inserted with a new record.

Objective-C Example:
OpenBase *connecti on;
char table[50];
char newRowi d[30] ;

strcpy(newRowl d, [connecti on
uni queRow dFor Tabl e: tabl e]);

ANSI C Example:
OpenBase *connecti on;
char tabl e[50];
char newRowi d[30] ;

st rcpy(newRow d,
ob_uni queRow dFor Tabl e(connecti on,
table));

OB-128 Users Guide

OpenBase API
BLOB/Object Handling Methods:

BLOB/Object Handling Methods:

This section will discuss the following methods:

“retrieveBinary:” on page 130.

“insertBinary:size:” on page 131.

Users Guide OB-129

OpenBase API
BLOB/Object Handling Methods:

retrieveBinary:
Defined in <OpenBaseAPl/OpenBase.h>
- (NSData *)retrieveBinary:(const char *)anld,;

This method retrieves a BLOB by its identification key and returns an
NSData object. The NSData object will release itself automatically.

The ANSI-C API returns newly allocated memory containing the BLOB
data. The BLOB size is returned through the size parameter.

Objective-C Example:
OpenBase *connecti on;
char bl obl O 10];
NSDat a * bl obDat a;

bl obData = [connection retrieveBinary: blobl D ;

ANSI C Example:
OpenBase *connecti on;
char bl obl D[10] ;
int returnSi ze;
char *bytes;

bytes =ob_retrieveBi nary(connection, bl oblD,
&returnSi ze) ;

OB-130 Users Guide

OpenBase API
BLOB/Object Handling Methods:

insertBinary:size:
- (const char *)insertBinary:(char *)data size:(int)size;

This method loads the BLOB of length size and location data into the
database. This method returns a key string (10 characters maximum)
that can be used to retrieve the data later. Information that is saved
using this method may be retrieved as a file as long as the filename is
specified.

BLOBs that are saved into the database are automatically removed
when the record referencing the BLOBs are deleted. You should never
reference the same BLOB key string in multiple records. Doing so
could cause BLOBs to be removed prematurely.

Objective-C Example:
OpenBase *connecti on;
char dat a[Bl GVALUE] ;
int size = Bl GVALUE;
char key[10];

strcpy(key, [connection insertBinary:data
si ze:si ze]);

ANSI C Example:
OpenBase *connecti on;
char dat a[Bl GVALUE] ;
int size = Bl GVALUE;
char key[10];

strcpy(key, ob_i nsertBi nary(connection, data,
size));

Users Guide OB-131

OpenBase API
BLOB/Object Handling Methods:

OB-132 Users Guide

Interactive SQL

This chapter introduces OpenlSQL, the interactive command line
interface to OpenBase. The OpenBase version of ISQL allows users to
execute SQL from the command line and import data files. Due to a
lack of shell support on Windows NT, OpenlISQL is not yet available
on that platform. However, there is now an OpenBase Manager tool
that will allow you to do similar things through a GUI interface for
Windows users. In this chapter, we present the following topics on
how to use OpenlSQL:

= “Getting Started” on page 133.

= “Executing SQL Queries” on page 134.
« “Clearing a Mistake” on page 135.

e “Comments” on page 135.

= “Importing SQL Data” on page 135.

= “Bulk Loading Data” on page 135.

= “Bulk Saving Data” on page 136.

= “Backup & Restore” on page 137.

« “History” on page 139.

 “Exiting OpenISQL” on page 139.

Getting Started

You can start the OpenlSQL program by launching it from the
OpenBase Manager (See Interactive SQL Terminal in the Tools menu)
or by entering /usr/openbase/bin/openisgl in a terminal window.
This will bring up the openbase prompt. The number following the
word openbase in the prompt indicates the current SQL line.

openbase 1>

The first thing you want to do is connect to a database. For the sake of
discussion, let's use the Movies database. You should make sure the
Movies database has been started using the OpenBase manager. If you
have not started the database, you may want to review the Getting
Started section of this manual for information on how to do this. To
connect to the customers database, type the following:

openbase 1> use Movies

Users Guide OB-133

Interactive SQL
Executing SQL Queries

The program will prompt you for a login and password. If you have
not altered the user table, type admin when it asks for the login. For the
password simply press the return key. Here is an example of what you
should see on your screen:

openbase 1> use Movies

login: admin

password:

using database "Movies' on host 'localhost'

openbase 1>
Specifying just the database name will tell ISQL to perform a network
wide search for the database named Movies. If you want to specify the

hostname you can follow your database name with an @ and the host
name. Here is an example:

openbase 1> use Movie@helsinki
login:root

password:

using database "Movie' on host 'helsinki’

openbase 1>

Executing SQL Queries

The first step is to type in the SQL query. You may type the entire
qguery on one line, or, if you find it more convenient, you may type it on
multiple lines. After entering your query, type go on a new line and
press return to tell the server that you would like to execute the query.
Here is an example:

openbase 1> select TITLE from MOVIE

openbase 2> order by TITLE

openbase 3> go

This will produce a list of movie titles in alphabetical order.

OB-134 Users Guide

Interactive SQL
Clearing a Mistake

Clearing a Mistake

If you make a mistake, use the clear command to reset the command
buffer. Here is an example of what you will see on your display.
openbase 3> clear
Command cleared.

openbase 1>

Comments

OpenlSQL filters out comments when executing SQL allowing you to
place comments in your script files. Comments start with /* and end
with */. Everything between these will be ignored by the OpenISQL.

Importing SQL Data

Sometimes you may want to execute a list of SQL statements to
populate your database. The load command will run an OpenISQL
script containing SQL commands, each followed by “go'. The following
example sends the contents of the file /tmp/mySQL to the database.

openbase 1> load /tmp/mySQL file

This method of loading the database can be especially useful when
executing upgrade scripts from the command line.

Bulk Loading Data

Some databases provide a bulk copy program to import and export
data in a comma delimited format. For this reason we provide a bulk
load function for importing comma delimited data into OpenBase.

Before loading a comma delimited file you need to specify the table
and fields you wish to load the information into. This is done by
adding a header to the file. Here is an example of what the top of your
data file should look like.

TABLE customers

firstname, lastname, company

Users Guide OB-135

Interactive SQL
Bulk Saving Data

“Joe”,”Smith”,”Smith Inc.”

“Fred”,”Jones”,”Jones Inc”

The first line should specify the table name using the TABLE key word.
The second line specifies the columns that the data is to be loaded into
separated by commas and the following lines contain data. Each line of
data should represent the data to be inserted into a single record and
string values must be enclosed in quotes or the ? symbol.

Once you have added the appropriate header to your data file you can
load it by using the bulk load command. Here is an example:

openbasel> bulk load /tmp/mydatafile.dta

ISQL will print any errors that it encounters to the ISQL window.

Bulk Saving Data

OpenlSQL's bulk save function exports database information to an
ASCII file. Tables that have been bulk saved can be bulk loaded into
other databases.

To bulk save data to a file type the following command into the
OpenlSQL window and press the return key.

openbase 1> bulk save /tmp/mydatafile.dta

OpenlSQL will open the file and return the following message and
prompt:
Enter select query and type go to bulk save data.

bulk save 1>

At the prompt type in a select statement that returns the data you want
to bulk save. Here is an example using the Company database:

Enter select query and type go to bulk save data.
bulk save 1> select * from contacts
bulk save 2> order by firstname

bulk save 3> go

If no errors are printed, the data is successfully saved to an ASCII file.

OB-136 Users Guide

Interactive SQL
Backup & Restore

Backup & Restore

The best way to backup your databases is to make copies of them. We
recommend that you make regular backup copies of your databases
located in Zusr/openbase/Databases (OpenBase/Databases on
WindowsNT computers). If you need to restore a database, stop the
database, remove the database’s work directory in
/usr/openbase/work and replace the database files with the backup.

Backup and restore functions are also provided for bulk loading and
saving ASCII snapshots of the database. The backup function includes
schema information as well as bulk saved data for all tables. Files
generated by the backup function and read by the restore function are
compatible with the backup and restore functions found in the
OpenBase Manager.

To backup the database to an ASCI|I file, type the following:
openbase 1> backup /tmp/myfile

To restore the database from an ASCII file, type the following:

openbase 1> restore /tmp/myfile

The backup and restore functions do not include user or permission
information. For a more complete backup we recommend copying the
database.db bundle located in the /usr/openbase/Databases directory
on your server computer.

Import

The OpenBase Manager Data Viewer has an export function which
allows you to export data in a character delimited format. The import
command in openisql allows you to read character delimited files.
Here is the command syntax:

import /tmp/myfile

Users Guide OB-137

Interactive SQL
Backup & Restore

The format of the file looks like this when ~ is the separator character:

[tabl e]
col umil
col um?2
col uma3

dat a~dat a~dat a
dat a~dat a~dat a

OB-138 Users Guide

Interactive SQL
History

History

The history function lists previously executed commands. Here is an
example:

openbase 1> history

1: backup /tmp/myfile
2: restore /tmp/myfile

You can execute one of these commands by either pressing the up
arrow key or by typing ! followed by the number or the first letter of
the command. Here is an example of executing command #1

openbase 1> 11
or

openbase 1> b

Exiting OpenlISQL

To stop the OpenISQL program, type quit at the prompt and press the
return key. This will quit the program.

Users Guide OB-139

Interactive SQL
Exiting OpenISQL

OB-140 Users Guide

10

Advanced
Administration

This chapter has been included to help system administrators manage
OpenBase in a networked environment. Topics including:

=“Exporting Databases” on page 141.

<“Improving Connect Time Using Ports” on page 141.

«“Fine Tuning Database Memory Usage” on page 142.

«“Improving Select Performance” on page 142.

«“Configuring the Network™ on page 143.

«“Loading data into OpenBase” on page 144.

Exporting Databases
Exporting the Zusr/openbase directory -- DON’T DO IT!

For many of our customers it has been a temptation to NFS mount the
same /usr/openbase directory on all computers across your network.
Besides the performance problems with doing this, it is dangerous.
Keeping the database directories local and private to each computer
ensures that two databases running on different hosts will not try to
access the same data files. We strongly recommend that you do not
export this directory.

Improving Connect Time Using Ports

When OpenBase clients connect to databases they first connect to a
nameserver process to look up the database’s TCP/IP ports. If connect
time is particularly important, you can skip this process by telling the
client exactly where to find the server.

The first step is to set the port number of your database. You can do
this from the OpenBase Manager Configuration Window or by
creating a port file in your database’s .db bundle.

Once you have restarted your database it will use the port that you set.
To connect to it you need to use # followed by the port number in place

Users Guide OB-141

Advanced Administration
Fine Tuning Database Memory Usage

of the database name. For instance, if your database is using port 35000
you should specify #35000 as the database name.

Setting and using port numbers does not affect the ability for clients to
connect by database name.

Fine Tuning Database Memory Usage

The ALTER TABLE command can be used to set buffer length defaults
for each table. This can be used to fine tune performance by decreasing
buffer sizes for tables that are used less frequently and increasing
buffer sizes for tables that are used more frequently. If you don't have a
need to change these numbers, we recommend that you leave them
alone.

Data buffers are counted on pages which may contain a maximum of
128 records on a single 20K page. But it depends on the size of the
records. The number of memory based data pages are 100 by default.
By increasing this value you will force the server to buffer more of the
data in memory and improve performance. The data page value can be
set as follows:

ALTER TABLE Company SET data_pages 200

Improving Select Performance

Adding the CLUSTERED keyword to your index definition arranges
the physical data in the table by the indexed column. This provides
significant performance benefits in cases where data is accessed
through a foreign key or is sorted by the specific column. By clustering
the column the database is able to find records likely to be accessed
together on consecutive pages.

Only one column per table can be used with clustering. Setting the
clustered column replaces any previous setting.

You can also set the clustered column using the OpenBase Manager
Schema Window. The popup entitled Natural Order allows you to set
the clustered index.

OB-142 Users Guide

Advanced Administration
Configuring the Network

Configuring the Network

There are two processes that provide network functions: openexec and
nameserver. Each computer which has the OpenBase server installed
will have an openexec process and usually only one computer on your
network will have a nameserver process.

The openexec process is responsible for performing a variety of tasks
on the local computer. These tasks include: setting the host password,
providing a list of all local databases to OpenBase Managers across the
network, copying databases, deleting databases, moving databases,
setting preferences, and starting up the nameserver process on the
correct host.

The nameserver process keeps track of databases and their ports so
clients programs can find their databases on the network. Each
database that starts up also connects to the nameserver so knowing
where the nameserver is running is important.

OpenBase uses configuration files to figuring out where the database
nameserver is running on your network. The NameserverHosts file
provides this information. Here is where the NameserverHosts file is
located on the different operating systems.

OpenStep 4.2: /LocalLibrary/OpenBase/NameserverHosts and Zusr/
openbase/NameserverHosts

MacOS X Server: /Network/OpenBase/NameserverHosts and Zusr/
openbaseNameserverHosts

Windows NT: ZApple/OpenBase/NameserverHosts

Solaris: /usr/openbase/NameserverHosts

Here is an example of what a NameserverHosts file looks like:
208.28.195.5

Each client computer should have access to a NameserverHosts file in
order to use the OpenBase Managers. Clients can connect to databases
without a NameserverHosts file when the database host is specified in
your connection dictionary. However, it is better to have the
NameserverHosts file be accessible by clients.

Users Guide OB-143

Advanced Administration
Loading data into OpenBase

Another file which should be setup is the localhost file. It tells the
OpenBase databases what the local hostname and ipaddress are. If this
file isn’t present it will get this information from the operating system.
However, this is a good way to ensure that OpenBase is using the ip
address you want it to use.

Here is an example of what the localhost file looks like:
myhostname
208.28.195.5

The localhost file should be placed in your “/usr/openbase” directory.

Loading data into OpenBase

There are many ways to import legacy data from another database into
OpenBase. One way that we recommend is to use EOULtil and
EOModeler to perform the conversion. Using this method will allow
you to import data from any ODBC database or any database with an
EOF adaptor.

To demonstrate the process we will export contacts data from the
Company demo database into another database. Here are the steps to
move your database data between two databases.

1. Create a model of your source database using EOModeler. If you
are on Windows you can use the ODBC adaptor to connect to your
existing database. After the database is created, save your model. For
this example we will save our model in /tmp (on MacOS X Server).

2. The next step is to export the data to a plist file. A plist file is essen-
tially a common representation for your database data which we will
later import into the target database. The following example moves
the data from the Contacts EOF entity to a plist file. To create the plist
file type the following command:

#/System/Developer/Examples/EnterpriseObjects/Setup-
Wizard.app/Resources/eoutil dump /tmp/contacts.eomodeld -task -
entities Contacts -source database -dest plist /tmp/contacts.plist -
modelGroup /tmp/contacts.eomodeld

OB-144 Users Guide

Advanced Administration
Loading data into OpenBase

Keep in mind that if you are on Windows NT you need to change the
path names to something like c:\Temp\contacts.eomodel, etc.

4. The next step is to make your adapter point to a newly created
OpenBase database. If you do not know how to create and start a new
database, please review the OpenBase Manager chapter for details.

Once a new database is created, go to the Model menu in EOModeler
and select Switch Adapter. Choose the OpenBase adapter and login to
the new database.

5. Now you need to check all your attributes to make sure they are
setup correctly. Since some adapters don’t put all the information
necessary in the attribute definition you may need to make some
changes. Here is a list of things to check:

All columns that have a date or time type should have a length of 30.
All string columns should have an appropriate length less than 1024.

Any column that requires more than a 1024 characters should be
changed to an object column. If you do this remove the length
completely. There should be no length for object columns.

Make sure to save the EOModeler file when you are done.

6. The next step is to create your database tables in the target database.
To do this, select the Generate SQL menu item on the Property menu.

A panel will pop up with SQL statements. Since this is a blank
database and you don’t need to drop the tables first, uncheck the Drop
Tables check box.

To create the target tables press the Execute SQL button. If it gives you
an error you may need to go back and check your model again. If you
do it a second time you may need to drop any database tables first
before performing this task again.

7. Now you are ready to import your database data into the OpenBase
database. Here is what we did to import the plist back into our
database.

#/System/Developer/Examples/EnterpriseObjects/Setup-
Wizard.app/Resources/eoutil dump /tmp/contacts.eomodeld -task -

Users Guide OB-145

Advanced Administration
Loading data into OpenBase

entities Contacts -source plist /tmp/contacts.plist -dest database -
modelGroup /tmp/contacts.eomodeld

If you get insert errors, you may need to go back and check to make
sure your model attributes are correct.

OB-146 Users Guide

Index

A
Aborting a Transaction 75
add columns 28
Adding and Editing Database Users

24
Adding Database Users 24
adding relationships 29
adding tables 28
Administration and Schema Design

23
Aggregate Functions and GROUP BY

53
ALTER TABLE 65
AND 48
Application Notification 89
AS SELECT 62
avg() 53
B
backup 37,137
Backup & Restore 137
Backup, Restore and Script Functions

37
beginTransaction 93
bindDouble 94
bindint 95
bindLong 96
bindLongLong 97
bindString 83, 98
BLOB 61
Blob/Object Handling Methods

129

bufferHasCommands 100
Bulk Loading Data 135
bulk saved to ASCII 37
Bulk Saving Data 136

C
C API 84
Change Password 36
Changing Database Name and Host
22
Changing Database Schemas 65
Changing User Access 68
char 61
CHOOSE(number, valuel, value2,...)
53
Cleanup before exit 35
clearCommands 101
Clearing a Mistake 135
client-server 13
Client-Server Architecture 13
commandBuffer 102
Comments 135
COMMIT 74,77
Committing Changes to the Database
74
commitTransaction 103
connectErrorMessage 104

Connecting to a Database Server 79
connectToDatabaseonHostlogin

passwordreturn 105
Constructing SQL 80
count(*) 53
CREATE INDEX 64
CREATE TABLE 59
Create Table 59
CREATE UNIQUE INDEX 64
CREATE VIEW 62
Creating Indexes 64
Creating New Databases 22
Creating Tables 59

Users Guide 0OB-147

D

Data Viewer 31
Data Viewer Search 32
Database Schema 27
Database Window 20
databaseName 107
date 35, 61
Date, Time, and Money 35
datetime 61
DEFAULT 60, 62
DELETE FROM 58
Deleting Database Records 58
Derived columns 44
Discussion
SimpleTool_main.m 85
DROP TABLE 65, 65
DROP VIEW 65
Dropping and Renaming Tables 64,
142
Duplicating Databases 22
E
Editing Database Users 24
Editing the Database Schema 27
executeCommand 108
Executing SQL Queries 134
EXISTS 47,55
Exiting OpenlISQL 139
Exporting Databases 141
Expressing String Values 58
=
Fine Tuning Database Memory Usage
142
float 61
FROM 46
G
Getting Started 133
GRANT... ACCESS... TO 68

GROUP BY 53, 54
H

History 139
host password 36
hostName 109

IF(condition,returnValuelfTrue,...) 52

Importing SQL Data 135
IN 47,55
INDEX 59, 62, 64
INDEXOF(string,substring) 50
Inner & Outer Joins 43
INSERT 55
insertBinarysize 131
Inserting Database Information 55
Installing OpenBase 15
int 61
Interactive SQL 36, 133
Introduction 12
isColumnNULL 110
J
JDBC driver 12
Joins 42
L
LEFT(string, length) 52
LENGTH(string) 50
License Scheme 14
LIKE 47
Linking BLOBs To Your Records 82
Localized Sorting 35
LOCKRECORD/UNLOCKRECORD
76
Locking Options 75
Log SQL to file 35
loginName 111
long 61

Users Guide OB-148

longlong 61
M
MacOS 12
makeCommand 83 112
Managing Database Servers 20
markRowofTablealreadyMarkedByUser
113
max() 54
min() 54
money 35,61
N
Nameserver Setup 16
nextRow 84,114
NOT 48
NOT EXISTS 48
NOT IN 47
NOT NULL 59, 62
@
ob_beginTransaction 93
ob_bindDouble 94
ob_bindInt 95
ob_bindLong 85, 86, 96
ob_bindLongLong 97
ob_bindString 85, 86, 99
ob_bufferHasCommands 100
ob_clearCommands 101
ob_commandBuffer 102
ob_commitTransaction 103
ob_connectErrorMessage 104
ob_connectToDatabase 85, 86, 106
ob_databaseName 107
ob_executeCommand 86, 99, 108, 112
ob_insertBinary 31
ob_invalidate 85
ob_isColumnNULL 110
ob_loginName 111
ob_makeCommand 85, 99
ob_markRow 113

ob_nextRow 85, 99, 114
ob_removeMarkOnRow 116
ob_resultColumnCount 118
ob_resultReturned 99, 122
ob_resultTableName 123
ob_retrieveBinary 130
ob_rollbackTransaction 124
ob_rowsAffected 125
ob_serverMessage 126
ob_uniqueRowldForTable 128
object 61
Objective C SQL Interface 89
OpenBase an Overview 11
OpenBase API 91
OpenBase Manager 17,20

OpenBase-SQL Objective-C methods

91
OpenlSQL 36, 133
OpenlSQL scripts 37
OpenStep 15,15
OR 48
ORDER BY 43, 44, 48
Overview 11, 89,91
P
password 115
PC database systems 13
per-application license 14
per-connection license 14
per-seat license 14
Preference Panel 33
Preferences 35
preferences panel 33
PROPER(string) 52
R
Registering for Notification 89, 91
removeMarkOnRowofTable 116
removeNotificationFor 117
REPLACE(string,startpos,length,. . .)

51

Users Guide OB-149

T

The FROM clause explained
The ORDER BY clause

The WHERE clause

time

Transaction Management
Transaction Overview
TRIM(string)

U

CREATE

UNIQUE

UNIQUE INDEX
uniqueRowldForTable
UNLOCK RECORD
UPDATE

UPDATE...SET

Updating Database Records

UPPER(string), LOWER(string)

Using Row IDs

V

varchar

Viewing Database Information

W

Webserver license
WHERE
Windows NT
WRITE TABLE

resultColumnCount 118
resultColumnName 119
resultColumnType 120
resultReturned 122
resultTableName 123
retrieveBinary 130
Retrieving Records 82
RIGHT(string, length) 52
ROLLBACK 75
ROLLBACK LOCKS 77
rollbackTransaction 124
rowsAffected 83, 125
S
Sample Databases 17
sample databases 17
Schema Report 36
SELECT...FROM 41
serverMessage 126
SET 57
Setting & Changing Table Permissions
25
Setting Preferences 35
setting the host password 36
SimpleTool 84
SimpleTool Example 84
sorting rules 35
SQL log file 35
SQL Standards 41
SQL Statement Execution 81
SQL Statements 41
START TRANSACTION 74
Starting a Transaction 74
Starting Databases 18,21
startNotificationFor 127
Stopping Databases 22
Subqueries 54
SUBSTRING(string,startpos,length) 51
sum() 53
System Administration 141

46
48
47
35,61
73
73
52

64
64
62
128
76
56
56
56
51
81

61
31

14

8, 57
15
75,75

Users Guide OB-150

Users Guide OB-151

OB-152 Users Guide

